Loop aerins revived Distorfon meter

Telequipment givesyou more'scope

wireless
 world

ELECTRONICS /TELEVISION /RADIO /AUDIO
From a simple single trace, battery/mains operated
sophisticated 50 MHz dual trace dual sweep oscilloscope
suitable for advanced computer applications Telequipment
bring you oscilloscopes for a wide range of applications
ogether with a selection of plug-in units, accessories and a
semi-conductor curve tracer.
engineer, phone or write, we'll be pleased to hent area sales

TELEQUIPMENT < 麗 >

Tektronix UK Limited, P.O. Box 69, Coldharbour Lane
Harpenden, Herts. Tel: 0582763141 Telex: 25559

JULY 1979 Vol 85 No 1523

47 Information gap

48 Loop aerials revived by R. E. Schemel
53 Simple digital filters by P. A. L. Ham
58 News of the month System X posed Buying British components IBA gets fourth tv network
62 Spot-frequency distortion meter by J. L. Linsley Hood
67 Charge-coupled memories for high-resolution picture insets by P. Bouvyn
71 World of amateur radio
72 The Heaviside signal by I. Catt
75 Letters to the editor Wavelength changes / Displacement current/Unions and electronics
81 A scientific computer - 4 by J. H. Adams
85 Converting between analogue and digital quantities - 3 by G. B. Clayton
91 Circuit ideas Cascode microphone pre-amplifier/High voltage regulator
93 Meteosat earth station - 2 by M. L. Christieson
98 New products
100 Sidebands by Mixer

WW - 082 FOR FURTHER DETALLS

DON'T GAMBLE WITH PERFORMANCE BUY

LEVELL OSCILLATORS
frequency
accuracy
SINE OUTPUT distortion

SQUARE OUTPUT
SYNC OUTPUT SYNC INPUT
METER SCALES SIZE \& WEIGHT

TG200 TG200D

£85 £90 £105 £110 £115

FREQUENCY
ACCURACY
SINE OUTPUT
DISTORTION
SQUARE OUTPUT SYNC. OUTPUT
METER SCALES SIZE \& WEIGHT
TG152D $\underset{\substack{\text { Without } \\ \text { meter }}}{\underset{2}{ }} \mathbf{2 8}$ 3 Hz to 300 kHz in 5 decade ranges
$\pm 2 \% \pm 0.1 \mathrm{~Hz}$ to 100 kHz .
 $<0.2 \%$ from 50 Hz to 500 kHz .
 2.5V r.m.s.s.sine;
$0 / 2.58$ \& -10 dB on
TG152DM. TG152DM.
$\begin{aligned} & \text { 260 } \\ & \text { batteries. } 130\end{aligned}$ TG152DM frequency accuracy

SINE OUTPUT distortion METER SCALES
SIZE \& WEIGHT

TG66B
£225 \qquad £240
Prices are ex works with batteries. Carriage, packing and VAT Optional extras are leather cases and mains power units.
Send for data covering our range of portable instruments.
 0 to 1% fine control on TG 200 DMP
$\pm 1.5 \% \pm \pm 0.01 \mathrm{~Hz}$ up to 100 kHz .
$\pm 2 \%$ ue to 1 MH $\pm 2 \%$ up to 1 MHz . $<200 \mathrm{~V}$ with Rs $=$
700 r.m.s. down to <200 600Ω.
$<0.05 \%$ from 50 Hz to 15 kHz,
$<0.1 \%$ from 10 Hz to $50 \mathrm{kHz},<0.2 \%$ ${ }_{\text {from }} 1 \mathrm{MHz}$. to $150 \mathrm{kHz},<1 \%$ at 1 Hz and TG200D, DM \& DMP only, 7 V peak
down to $<200 \mu \mathrm{~V}$. Rise time $<150 \mathrm{~ns}$.
$<1 \mathrm{~V}$ r.m.s. N r.m.s. Sine in phase with output
$\pm 1 \%$ treq. lock range per volt r r.m.s.
TG200M. DM TG200M, DM \& DMP only. $0 \% 2 \mathrm{~V}$ $0 / 7 V \&-14 /+6 \mathrm{dBm}$.
$260 \times 130 \times 180 \mathrm{~mm} .4 .3 \mathrm{~kg}$ with
batteries.

controls.
+0.02 Hz be
+0.02 Hz

$\pm 1 \%$ from 100 kHz to 300 kHz .
 5 V r.m.s. down to $30 \mu \mathrm{~V}$ with
600 S .
$<0.15 \%$ from 15 Hz to 15 kHz . $<0.5 \%$ at 1.5 Hz and 150 kHz ,
26 Kxpanded voltage and $-2 /+4 \mathrm{dBm}$
$260 \times 180 \times 180 \mathrm{~mm} 5.4 \mathrm{k}$

LEVELL Aletrones tro.

Switch on. Connectcomponent. Read Answer

The Sullivan AC5555 Automatic component analyser is a mains operated,fourteen range digital capacitance, resistance and inductance measuring system.t is capable of automatically choosing the correctrange andfunction for any two-terminal componentandmeasure the parallel capacitance and conductance or the series inductance and resistance over a wide range atatest frequency of 1 khz .
The Sullivan AC5555 can be used by unskilled operators for quality control of goods There are no adjustmentsrequired and specialknowledge about he component
capabilities is needed. The instrument doe tallforyou
The unit is competitively priced and backed by the unbeatable reputation of Sullivan. Get in touch with us today for the fullfacts.

Sullivan

HWSullivanLtd
Archcliffe Road, Dover, Kent,CT17 9EN. Tel:(0304)202620. Telex:96283.
It Thom Measurement \& Components Division

Measure Resistance to 0.01Ω...
At a Price that has no resistance at all

ONLY 555
$+£ 3 p \& p+$ VAT $£ 4.64=£ 62.64$)
*FULLY GUARANTEED FOR 2 YEARS
*METAL CASE

THE ULTIMATE IN PERFORMANCE - MEASURES RESISTANCE TO 0.01 OHMS,VOLTAGE TO 100 MICROVOLTS, CURRENT TO 1 MICROAMPS AT LOWEST EVER PRICE!

- $31 / 2$ digits $0.56^{\prime \prime}$ high LED for easy reading
- High input impedance 10 Megohm
- High accuracy achieved with precision resistors,
- High accuracy achiev
- Input overload protected to 1000 V (except 200 mV scale to 600 V)
- Auto zeroing, autopolarity
- Mains (with adaptors not supplied) or battery
operation-built-in charging circuitry for NiCads
- Overrange indication
Hi Low power ohms, Lo for resistors in circuit, Hi for diodes

DC Volts	
	-Range $200 \mathrm{mV}, 2 \mathrm{~V}, \mathbf{2 0 V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$ Accuracy $1 \% \pm 1$ digit, Resolution .1 mV
AC Volts	Range $200 \mathrm{mV}, \mathbf{2 V}, \mathbf{2 0 V}, \mathbf{2 0 0 V}, 1000 \mathrm{~V}$ (Response 45 Hz to 5 KHz) Accuracy $1.5 \% \pm 2$ digits, Resolution .1 mV
DC Current	Overload protection 1000 V max, 200 mV scale 600 V
	Overload protection - -2 amp fuse and diodes
AC Current	Range $2 \mathrm{~mA}, 20 \mathrm{~mA}, 20 \mathrm{mama}$, 2 amp Accuracy 1.5% 2
	Overload protection -2 amp fuse and diodes
Resistance	Range 20, $200,2 \mathrm{~K}$, $200 \mathrm{~K}, 2 \mathrm{2}$ Meg. 20 Meg. Accuracy $1 \% \pm 1$ digit,
Environmental	Temp coefficient 0° to $30^{\circ} \mathrm{C} \pm .025 \%$
	ating Temp 0° to $50^{\circ} \mathrm{C}$ Storage - 20° to
General	
	Size $71 / 4 \times 5 \% \times 2 / 4.6$ Weight $21 / 2 \mathrm{lbs}$.

At $£ 55, \mathrm{M} 1200 \mathrm{~B}$ is the best buy among DMM's currently available. Its 0.01 ohms resolution allows you to detect shorted wind ings in coils, transformers or motors. It is also useful in checking low contact resistance in switches, relays or connectors. Poor solder connections can also be spotted. The low
without forward biasing semiconductor junctions.
You have been waiting a long time for a digital multimeter with all these features at a price like this. Now its yours.

Also available from retail shops:
Audio Electronics,301 Edgware Rd,London W2 \& I Aero Se
-agents wanted
Elenco mpelisin Sole UK Distributor
ME Maclin-Zand Electronics Ltd 38 Mount Pleasant, London WC1XOAP Tel.0142) 832966
Telex. 8953684 MACLIN G

To: Maclin-Zand Electronics Ltd 38 Mount Pleasant, London WC1X OAP Please send me \qquad DMM M1200B @ $f 62.64$ inc. $\mathrm{p} p+\mathrm{VAT}$ (overseas $f 60$).
I enclose cheque/P.O./Bank Draft for $£$
Name \qquad (block
\qquad LETTERS
PLEASE)

talegraputasting sinnolffed

Lightweight, portable, Telegdata TCT10 makes light work of on-site circuits and machines.

This new Plessey instrument combines signal generator and analyser in a single briefcase-size unit enabling on-site testing of telegraph circuits and machines to be carried out speedily and with a high degree of
accuracy. Powered
Powered from the a.c. mains supply, the TCT10 gives No 2 and No 5 alphabets including the fuls in CCIT fox' message, Q9S and any single character character demand.
Accurate readout (to 1\%) is given unambiguously on an LED scale registering up to 40% distortion 'early/mark bias and late/space bias.
ww - 011 For further details

 BAPMF FT STRIUI PRESEMT TIE ta Mil OFFIEGTRDNIEFILEAS

At Barr \& Stroud we strive constantly to meet all your filter At requirements. To our modular EF3 system we have added two new filter units, the EF3-07 and the EF3-08 to give greater flexibility. To meet a more general filtering requirement we have introduced the self contained EF4 unit. These new filters, added to the existing six options available
in the EF3 system, expand still further their scial and medical applications. EF3-07 This plug-in band pass/band stop unit has a centre frequency variable from 1 Hz to 99.9 kHz . Six values of Q from- 2 to 40 can be switch selected. Pass band gain is switch selected
from 0,20 or 40 dB settings. Remotely programmable, either by from 0,20 or 40 dB settings. Remotely programmable, either by
direct line control or TTL logic level.
EF3-08 A universal filter with low pass, high pass, band pass or band stop facilities, EF3-08 has a centre or cutofffrequency variablefrom 0.001 Hzto 9.99 kHz
Remotely programmable like the EF3-07.

EF4 For simple band pass filtering our new EF4 unit is the ideal choice. This self-contained filter with integral power supply features a unique linearising circuit allowing continuously variable
frequency control over an evenly graduated tuning dial. The filter frequency control over an evenly graduated tuning dial. The filt characteristic is band pass with a centre frequency range from
1 Hz to 100 kHz , and five Q values plus $1 / 3$ octave response are switch selectable.
Custom with a difference If our range of 'off the shelf filters, including our Active Filter Modules, leaves your needs off the map we will gladly study your individual requirements and ustom-build the perfect solution.
Twenty years' experience, in-house computer facilities and an extensive program library guarantee you a cost-effective system. nextensive program ibrary yuarantee you a cost-cfective
Desyste
can be either active or passive, with cut-off rates up
 adds to your resources
Barr \& Stroud Limited, Melrose House, 4-6 Savile Row, London WIX 1AF. Tel: 01-437 9652. Telex: 261877.
A member of the Pilkington Group.

How...Why...When?

Distress calls are made every day-hundreds each year, and in every case questions are asked. Questions which require accurate, up-to-the-minute answers. Answers that can only come from reliable and immediately accessible communications recordings.

When police, ambulance,
fire, local ATC and other services are called upon, either by radio or telephone, they often receive hasty, garbled messagessometimes several at a time sometimes several at a time need for communications
recording arises-a need for system with instant message trace and replay-at the touch of assist intelligibility All these faciliti
All these facilities, and more are available in the Racal Recorders 'Callstore' cassette recorder/reproducer. Actuated either by incoming audio signals or by local or remote control, Callstore uses four cassette transports, each giving up to four separate channels, including a search control track which is cued at the beginning of each message.

For details write to Racal Recorders Limited Hardley Industrial Estate ythe, Southampton England , 0462 Telephone:0703 843265 Telex:47600.

BLACAL

Callstore, from Racal Recorders,answers all the questions.

STMESERIES III

The best pick-up arm in the world

VHF $25-500 \mathrm{MHz}$ Eddystone 1990R Series

- General purpose receivers providing
reception facilities for $A M, F M, C W$ and pulse transmissions
- Choice of 10 -channel crystal facility or synchronizer
10D/CA. 32198

UHF $440-1000 \mathrm{MHz}$ Eddystone 1990 S Series - AM:FM:Pulse. Wide/narrow IF filter

- Tune frequency setting to 1 kHz
- Synchronized for high stability working

Both series are of modular construction and are available for rack or table mounting. Panoramic Display Units are available. Please write for illustrated brochures.

Eddystone Radio Limited
 Member of Marconi Communication Systems Limited

Alvechurch Road, Birmingham B31 3PP, England Telephone: 021-475 2231 Telex:337081

WW - 018 FOR FURTHER DETAILS

WW - 016 FOR FURTHER DETAISS

M-tron is a major, long established manufacturer of AT cut crystals suitable for fundamental and overtone operations' in the 1 MHz to 170 MHz frequency range volume production capability for the microprocessor, CATV M-tron's big advantage is the soghisticated markets.
M and M-tron's big advantage is the sophisticated computer design program that determines the optimum
mechanical parameters of a crystal to meet your electrical
specifications specificications.
MCP Electronics are the sole UK agent vailable from stock at very competitive prices For more details and the new catalogue, contact Ron Adams,

The FM/AM 1000s with

Spectrum Analyser

A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope tone generator, deviation meter, modulation meter, signal generator, wattmeter, voltmeter, frequency error meter-and up to five service engineers who could be doing something else!
For further information contact Mike Taylor
2 Fieldrech
FieldTech Ltd Heathrow Airport-
London Hounslow London Hounslow TW6 3AF
Tel: 01-759 2811 Telex: 23734
FLDTEC G

Whatever it is, the -T||r- 'S' range of power amplifiers will handle it

 thi $\mathbf{H}|\mid \boldsymbol{H}$S' range is designed to handle heavy industrial usage in the fields of vibrator driving, variable frequency power supplies and servo motor systems.

S 500D

Dual Channel
$19^{\prime \prime}$ rack mount $3^{1 / 212^{\prime \prime}}$ high
500 w r.m.s. into 2.5 ohms per channel $900 \mathrm{wr.m.s}$. in bridge mode DC-20 KHZ at full power
0.005% harmonic distortion (typical) at 300w r.m.s. into 4 ohms at 1 KHZ 3 KW dissipation from in-built force cooled dissipators

S 250D

Single Channel
$19^{\prime \prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high
500 w r.m.s. into 2.5 ohms
Retro-convertible to dual channel
DC-20 KHZ at full power
Full short and open circuit protection Drives totally reactive loads with no adverse effects

A complete range of matching transformers and peripheral equipment for closed loop constant current and voltage use are available.
Alternative input and output termination to
specifications. For complete data write or to order. Rack case for bench use built to ite or call.
Kirkham Electronics
MILL HALL, MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL
DIVISION OF K.R.S. LIMITED DIVISION OF K.R.S. LIMITED,
TELEPHONE (037 976) 639/594

TELEPHONE (037 976) 639/594
FRANCHISED COMMERCIAL AND INDUSTRIAL AGENTS FOR ELECTRONIC ww - 042 FOR FURTHER DETAILS

SuperScope is Philips new PM 320715 MHz dual trace oscilloscope. As well as being the best looking instrument of its type available, it's also the best value by far.

Look at this unique feature package: design and construction. Inside it you'll see an electronic masterpiece, not a "birds' nest".

- Auto triggering from either channel with adjustable level between peaks. TV triggering, too.
-5 mV sensitivity - the same X and Y - which is
especially useful for weaker signals.
signals in phase with the reference.
signals in phase with the reference.
trace space, Bi, rectangular sereen giving a full $80 \mathrm{sq} . \mathrm{cm}$.
trace space. Choice of ground, due to double insulation. SuperScope is ideal for audio and video service education, production - in fact any application which calls for a sophisticated yet tough all-purpose instrument. the Philips Electronic Instruments Department at Pye Unicam.

FASTER THAN A SCOPESAFER THAN A VOLTMETER

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK
WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS -
$\stackrel{\text { Stereo }}{\substack{\text { PREAMPLIFIE }}}$

CPR 1

 MC 1- Pre.par.Amplifir. Suin

 Power Aplifies

 apolusis nomo eectreser.

and

CRIMSON ELEKTRIK

But what does it

Big is not always
beautiful.

So when we boast
more resources than all
our competitors put together you might be inclined We agree.
When you are making substantial investments in two-way radio we expect more than facts and
figures to be taken into account.
Like the people you are dealing with, starting is your relationship with the man up front How good hinking long term or looking for a quick sale to thinking long term or looking for a quick sale today? And who is backing up his promises - a well
resourced U.K. based manufacturing and supplying
company wholly
dedicated to the future
growth and growth and development of twoway radio or a remote parent company looking for way radio or a rentage in whichever markets suit it mext at the time? (If the latter, ensure he'll be around next time you have a replacement or extension next time you
We are not suggesting that you look to Pye Telecom for perfection. In this business staying the course for 35 years and making all the running for the future will always have its problems. But if ever those problems happen to be yours, you can count whenever you need them. St. Andrews Road, Cambridge, CB4 1DW.
ww - OOG FOR FURTHER DETAILS

More second user oareins from carston

Top Quality Test Equipment at the keenest prices

solartron STARTRONIC SYSTRON DONNER LNG 16-1016V/10 A varable Transducers ELECTRO MECHANISMS Pulse Generators E. H. RESEARCH 320 500 503 Hz - 50 MHz RT 5 ns LYONS INSTRUMENTS PG2E10V/50 $10 \mathrm{~Hz} / 50 \mathrm{MHz}-10 \mathrm{MHzRT} 5 \mathrm{~ns}$ SYSTRON DONNER Recorders \& Signal Conditioning Equipment BRUNO WDELKE ME102B Wow and flutter meter Recorders \& Signal Conditioning Equipment BRUEL \& KJAER 2305B Stylus Recorder includes 50 db pot HEWLETT PACKARD 17502A Plug-in for 7100 series SE LABS 3006 LT 12 channels UV 6 inch chart MICROMOVEMENTS M400 Galvo $300 \mathrm{~Hz} 50 \mu \mathrm{~A} / \mathrm{cm}$ M1 600 Galvo $1000 \mathrm{~Hz} 0.4 \mathrm{maA} / \mathrm{cm}$ M 8000 Galvo $5 \mathrm{kHz} 15.5 \mathrm{~mA} / \mathrm{cm}$ SIEMENS KOMP III 2 pen potentiometric roll Generators ADVANCE H1 $15 \mathrm{~Hz}-50 \mathrm{KHz}$ DAWE EH RESEARCH 967 Attenuator $25 \mathrm{~W} .0-40 \mathrm{db}$ HEWLETT PACKARD $8693 / 1003.7 \cdot 8.3 \mathrm{GHz} 5 \mathrm{~mW}$. MARCONI TF791 FM Deviation Meter 4-1024 M -TF885 0-12 MHz Sine/Square -TF995A/2 1.5-220 MHz AM. FM

Prices
from
25
25

AIRMEC
264 Milivolmeter $3 \mathrm{mV}-1$ Vranges

\qquad

$\begin{array}{r}135 \\ \\ \\ \hline\end{array}$

120
150

 ROHDE \& SCHWARZ
SWOB $10.5-400 \mathrm{MHz} 75 \Omega$
SWI

 T.V.Test Equipment
MARCON

COMARK
$\substack{1604 B \text { AL A A Alogue thermometer } \\ 0.100^{\circ} \mathrm{C}}$

$\substack{\text { LEEDICKENS } \\ \text { HP5 Humidity probe }}$
 Wirtmeter
RAYTEK
T1000 inta-1 niditiyprobe

650 \qquad75450
30
HEWLLETT PACKAR
He

A205 19999 FSD AC, C
Wave Analysers
575

40 WAYNE KERR 20 Hz -20 KHz. Sens. 75 dbo Redundant
75 Test Equipment525 Why not turn your under-utilizedtest equipment into cash ? Ring
us and we'll make you an off85
175200
300

WIRELESS WORLD, JULY 1979

 FROM CSC

ELECTRONICS BY NUMBERS LED BAR GRAPH UNIVERSAL INDICATOR
Now using EXPERIMENTOR BREAD. BOARDS and following the instructions in
"Electronics by numbers" ANYBODY can
build electronic proiets builid electronic projects. ANYBODY can
Look at the diagram and select R1, this is resistor with a value between 120 to 270
ohm. Plug it into ohm. Plug it into holes X20 and D20 now
take LED 1 and plug it into holes E20 and F20. Do the same with the Doloses E 20 and
D7. pliug

$$
\leftrightarrows
$$

YOU WILL NEED
EXP. ANY EXPERIMENTOR BREAD.
B1 to D15 - Silicon Diodes (such as 1 N9144
R1 to R6-From $120-270$ ohm resistors. $1 / 4$
wED1 to LED6 - Light emitting diodes. LED BAR GRAPHS are replacing analogue
meters as voltage-level indicators in many instances. This circuit uses the forward voltage drop of
diodes to determine how many LEDs light up. Any type of diode can be used but you
must use all the same type. For full working must use all the same type. For full working
details of this circuit fill in the coupon. details of this circuit tilin the coupon.
If you have already built the Tow-transistor
Radio and the Fish'n"cliks projects you will Radio and the Fish'n'cliks projects you will
find that you can reuse the components
from these projects to build other proiects from these projects to build other projects
in the series

FILL IN THE COUPON AND WE WILL
 and No 3 .

PROTO-CLIP TEST CLIPS.
Brings IC leads up from crowded PC boards.
Available plain or with cable with clips at Available plain or
one or both ends.
$\mathrm{PC}-16$ pin.
$\mathrm{PC}-16$ pin with cable.
f6.
PC - $\begin{gathered}\text { 16. with cable and } 16 \text { pin clips at } \\ \text { both ends. } \\ £ 10.25 \text {. }\end{gathered}$

EXPERIMENTOR BREADBOARDS No soldering modular breadboards, simply plug
components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to build breadboard of any All EXP Breadboards have two bus-bars as an integral part of the board, if you need more than 2 buses
simply snap on 4 more bus-bars with the aid of an simply snap on 4 more bus-bars with the aid of an
EXP.4B.

EXP. 325
 chip circuits. The ideal breadboard for Accepts $8,14,16$ and ONLY $£ 1.60$.

PROTO-BOARDS.
THE ULTIMATE IN BREADBOARD THE ULTIMATE IN BREADB
FOR THE MINIMUM COST.
TWO EASILY ASSEMBLED KITS.

B. 6 Kit, 630 contacts four 5 wav binding

posts accepts up to six 14 -pin Dipy. | posts accepts up to six 14 -pin Dips. |
| :--- |
| PROTO-BOARD 6 KIT. |
| . |
| 10.20. |

EXP. 350. £3.15. 270 contact points with
two 20 -point bus-bars.

EXP. 300.
505 contacts

EXP. 650 for Micro
EXP 4B.
More bus-

$\underset{\substack{\text { ALL EXP } \\ \text { series. }}}{\text { EXP. } 300 \text { Breadboards mix and match with } 600}$

PB. 100 Kit complote with 760 contacts
accepts up to ten 14 -pin Dips. with two
inding posts and sturdy base. Large capa-
 HOW TO ORDER AND RECEIVE FREE COPY OF TWO-TRANSISTOR RADIO PROJECT,
FISH'N'CLIKS AND LED BAR GRAPH.

CSC UK LTD. Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3 AQ.

		14 PiN.DIP.	NCLUDING POSTAG AND V.A.T.
EXP. 325	130	1	${ }_{\text {f }} 2.53$
	270 550	6	¢ ¢ 4.21 7.29
Exp. 650			
EXP. 4B.	Four 40 Point Bus-Bars	Bus-Bar Strip	¢ 3.29
TEST CLC. ${ }^{\text {ctips }}$			
PC. 16 -18.			${ }_{\text {¢ }}^{\text {¢ }} \mathbf{3 . 7 8 8}$
PC. 16.18 Dual Clip.			£12.15
$\begin{aligned} & \text { PB. } 6 . \\ & \hline \end{aligned}$	630 760	${ }_{10}$	$\mathrm{fl11.01}^{\text {c1 }}$
Name			
Address			

FILL IN COUPON \& RECEIVE FREE COPY OF ELECTRONICS BY NUMBERS PROJECTS Nos 1, 2 AND 3

Number1...

...for Professional...

SUPER RANGE AUTO/STANDBY INVERTERS

Introducing our new CRA range of automatic standby inverter units. Assembled in aluminium instrument cases with rexine covered top.

Features Include

All silicon transistors - Separate driver and output transformers - Choice of models providing 240 V off load or 110 v off load AC outputs

- Frequency choice of models for 50 Hz or 60 Hz outputs (both $+-5 \%$ typical) - Built-in battery charger model, choice of either $12 \mathrm{~V}, 24 \mathrm{v}, 4 \mathrm{~s}$ v - Frequency choice of models for 50 Hz or 60 OHz outputs (both $+-5 \%$ typical) - Built-in battery charger model, choice of either $12 \mathrm{~V}, 24 \mathrm{~V}, 48 \mathrm{~V}$,
dc 500 ma - Square-Wave Output Standard or optional filtered output availabie - DC line Fused - Rubber 13 -amp type mains output socket panel fused - Switchover from mains to inverter supply automatic and almost instantaneous - Automatic control relays designed to only fail in
safe modes - Red panel indicator shows mains on - Green panel indicator shows inverter on - Designed for very cool operation -2 -year safe morates.
guarantee.

OPERATION

Simply connect to front panel 13 -amp rubber socket any equipment you require to operate permanently from the normal mains supply or built in inverrer supply, connect the polarity coloured leads to a suitable battery source and finally plug in the mains cable with 13 -amp plug fitted to your
normal mains supply socket - you're never need to be in the dark again.

)	
CRA/1-Cased $10^{\prime \prime} \times 8^{\prime \prime \prime} \times 4^{\prime \prime \prime} 150$ watts	${ }_{\text {E62.60 }}$
CRA $/ 3$-Cased $10^{\prime \prime} \times 8^{\prime \prime} \times 412^{\prime \prime} 250$ watts	ع74.00
CRA/4-Cased $12^{\prime \prime \prime} \times 8^{\prime \prime} \times 41 / 2^{\prime \prime} 300$ watts	ع85.00
CRA/5-Cased $12^{\prime \prime} \times 8^{\prime \prime} \times 5^{\prime \prime} 400$ watts	£106.00
CRA/6-Cased $12^{\prime \prime} \times 8^{\prime \prime} \times 5^{\prime \prime} 500$ watts	E138.00
CRA/7-Cased $12^{\prime \prime} \times 8^{\prime \prime} \times 6^{\prime \prime} 700$ watts	£182.20

ORDER DETAILS

State input/output voltage required State 50 Hz or 6 OHz inputs / outputs
Filtered output available at 20% extra

TRANSISTORISED DC TO AC INVERTERS

ELECTROVANCE p.0. Box 191, LONDON swe 2Ls
ww-025 For furither detalls

...and now No.3!

This third book in Wireless World's popular series will be welcomed by all concerned with designing, using and understanding electrenic circuits. t comprises information previously included in the third ten sets of Wireless World's highly successful Circards - regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, ircuit limitations, modifications, performance data and graphs. performance data and graphs.
The book follows on from Circuit The book follows on from Circuit Designs Nos. 1 and 2. It is magazine ize in hard cover and contains ten ets of Circards plus additional information and an explanatory introduction. Like its predecessors, it may soon be difficult to obtain, o you are advised to order your copy without delay.

circuit designs

Collected Circards
PWilliams/JCarruthers/JHEvans/JKinsler

A WIRELESS WORLD PUBLICATION

A book from Wireless world

General Sales Department, IPC Busincess Press Ltd. Ruom CP 34. Dorset House, Stamford Street, London SEI 9LU.

ORYX SR-2
High power de-solder tool with anti-recoil safety spring. ORYX SR3A/S
Mini-silver de-solder tool. A more powerful version of
the SR3A.
Mini-orange. Our most popular model, the industry's
standard tool.

The NEW ORYX SR3A/Micro
The NEW ORYX SR3A/Micro
Identical to the SR3A but has a finer nozzle - only 1.5 mm internal diameter.

Only $1 / 2^{\prime \prime}$ diameter. Weighs only $10 z$ - the smallest, really effective de-solder tool available

ORYX 881
Bulb Solder Sucker. Handy, lightweight and easy to use.

Greenwood Electronics

Portman Road, Reading, Berks. RG3 1NE Tel: (0734) 595844 Telex: 848659
wW - 091 FOR FURTHER DETAILS

for all demagnetising problems LEEVERS-RICH
have the answer
LR70 for tapes
up to $8^{1 \frac{1}{4}}$ Dia and 1^{11} wide
LR71 for tapes
up to $11 \frac{1}{2}$ Dia and 1 "wide
LR72 Han-d-mag for demagnetising heads and tape path components
LEFVERS. RICH 319 Trinity Road Wandsworth London $\begin{array}{ll}\text { LEEVERS RICH } & 319 \text { Trinity Road,Wandsworth,London } \\ \text { EQUIPMENT LTD } & \text { SW18 3SL Tel: } 01-8749054 \text { Telex: } 92355\end{array}$

METER PROBLEMS?

137 Standard Ranges in a variety o sizes and stylings available for 10-14
days delivery. Other Ranges and special scales can be made to order.

Full Information from
HARRIS ELECTRONICS (London) 138 GRays inn road, w.c. 1 Phone: 01/837/7937 WW - 039 FOR FURTHER DETAILS

The frequency range 600 Hz to 30 MHz is covered by both CMOS ($600 \mathrm{~Hz}-8 \mathrm{MHz}$) and TTL ($150 \mathrm{KHz}-30 \mathrm{MHz}$) types having an overall tolerance of $\pm 0.01 \%$ from 0 to $+70^{\circ} \mathrm{C}$. For more stringent requirements,
$\pm 0.01 \%$ from -55 to $+125^{\circ} \mathrm{C}$ is available. $\pm 0.01 \%$ from -55 to $+125^{\circ} \mathrm{C}$ is available. Many
stock.

INTERFACE QUARTZ DEVICES LTD
29 Market Street, Crewkerne, Somerset TA18 7JU Crewkerne (0460) 74433 Telex 46283 inface g wW - 094 FOR FURTHER DETAILS

TYPE 217 DUAL POWER SUPPLY $£ 86.22$ $+\mathbf{E 2 . 5 0}$ car. $\&$ ins.
CONSTANT VOLTAGE or CONSTANT CURREN
$+0-20 \mathrm{~V}$ and $-0-20 \mathrm{~V}$ or $0-40 \mathrm{~V} @ 0-750 \mathrm{~mA}$ - Digital monitoring of either voltage or current

- Independent setting of positive or negative voltages and
-Constant voltage / constant current mode indicators Other value-for-money products include
Filter oscillators, function generators Frequency meter, Counter Timers
-air standard, DPMs \& Bar-type meter
OMB ELECTRONICS
Riverside, Eynsford, Kent DA4 OAE
Telephone: Farningham (Code 0322) 863567 Prices (which are CWo, ex Vat) are correct at time of going to press and subject to change without notice

WHY BUY A MICRO-COMPUTER FROM (D) Tr A SB E B ELECTRONIC BECAUSE

Digiolaccuracy Anologue price-

The new Fuke 80p2A DMM now ofiers the best of boin worlds at only

It's true! The 8022A brings you digital precision and ruggedness-at analogue prices, from the world leader in digital multimeters.
Featuring the Fluke in-line pushbutton concept for easy single handed operation this pocket sized lightweight meter has a $0.25 \% \mathrm{DC}$ accuracy, incorporates warranty. consumption and offers a full two year war
For only $£ 89.00$ you can now hold the world of FLUK目 No. 1 in DMM's measurement in the palm of your hand.
Fluke International Corporation, Colonial Way, Watford, Herts. WD2 4TT. Telephone: (0923) 40511. Telex: 934583 Also avalable from ITT Instruments Services, Hariow, Essex. \qquad

8022A Checklist

Whether you are buying your first multimeter or moving up to digital from analogue, check these features against your existing meter.

Ano compromise Digilal Mullimeter al an analogue price.

FLUKE

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE A Thermometer designed to operate as an Electronic Test Meter. Will
measure temperature of Air. Metals, Liquids. Machinery. etc., etc. measure temperature of Air. Metals, Llquilds. Machinery, etc.. elc.
Just plug-in the Probe, and read the temperatue on the large oper
scale meter. Supplied with carrying case, Probe and internal $11 / 2$: volt standard size battery.

 Write for further details to ${ }^{\text {(VAT }} 8 \%$ EXTRA).
HARRIS ELECTRONICS (LONDON) 138 GRAY'S INN ROAD, LONDON, WC1X $8 A X$

> WW - 038 FOR FURTHER DETAILS

7II Hift.

 -
 special quality industrial tool kits and cases

Send now for details of the superb Jensen range of tools, meters and accessory equipment, all in the most handy and robust cases - also available separately. Jensen products are specifically designed for industrial use, perfect for all engineers, technicians, electricians, instrument repairmen etc.
Choice of more than twenty kits and cases.
Write for free Jensen catalogue to:

SPECIAL PRODUCTS DISTRIBUTORS LTD,
SPECIAL PRODUCTS DIV OHL. Tel: 01-629 9556. Cables: Specipr Londen

If QUAD amplifiers are so perfect, why does it still sound better in the concert hall?

In real life, the sounds from all the instruments and sometimes parts thereof are independently radiåted and so are not 'phase locked' together nor are they subjected to common eigentones

These mutually incoherent wavefronts are subjected to tiny but important reflections at the pinna and finally end up as just two channels representing and finally end up as just two channels representing the pressure at the two ear drums. It is not po achieve this transfer accurately by means of
loud-speakers or headphones however good these components may be.

Nevertheless with good amplifiers and loudspeakers (and on those occasions when the people at the recording and transmitting end get it right) a musical experience can be achieved which is extremely satisfying and one of the greatest pleasures of our time.

For further details on the full range of QUAD products write to: The Acoustical Manufacturing Co. Ltd. Huntingdon, Cambs. PEI8 7DB. Tel: (0480) 52561

```
QUAD
for the closest approach to the original sound QUAD is a registered Trade Mark
```


TheKing of Valves

Genuine Gold Lion ${ }^{(1 M)}$ valves are something very special. Hand built, utilising advanced pumping techniques and individually tested to a very tight specification indeed.

Qualities that are needed more than ever now that the Hi-Fi enthusiast is demanding better and better sound.

Sound which only valves of Gold Lion's quality can help produce. Gold Lion KT77's and KT88's covering 30-200 watts, are available now from M-OV along with data and distribution details. (A list of M - OV distributors appears opposite.)

Long live the King. Long live qualitysound.
(TM)Trade mark of M-OV Audio Valves.

WIRELESS WORLD. JULY
ARGENTINE REPUBLIC
EnglishElectric Marconi

Tel: $2438020-20$

belaium
BELGIUM
SATIEICltonics, 66 Chaussee de Ruisbroek,
1190 Brussels.
Tel: 1102 Brussels. 3762030 Telex: 21601
BRAZIL
IGBIndGran
IGBIInd Gradiente Brasilierass. S.A. Staub Agency
Division. Caixa Postal

CANADA
EEVCanadaLtd., 67 Westmore Drive, Rexdale,
Tel: (416) 7459494 Telex: $06-989363$
CHINA
Cabo and Wireless Systems Lid. GPOBOX
Mercury House, Connought 4 Road Central
Mercury House, Connaught Road Cent
Hong
Hong.
Teil: $5-2831385$ Telex: HX 74000
DENMARK
evimport A.S., Virkeholm
Tel: (02) 113066 Teleex: 35134 CSÍOK
FRANCE
GECComposantss.a., Departement Tubes
Electroniques. Tourd dAsnieres, 194 Avenue des
Gresillons. 9260 AsAnieres.
Tel: 7914444 Telex: 61047 IN INELMEC
WEST GERMANY
Nucletron Vertriebs $\mathrm{GmbH}, 8$ Munich 50
Politiach 500180 1 089 1 $14081-85$ Telex: 5215297
GREECE Telmacoltd. 8 Sekeri Street, Athens 13
Telmacoldd., S Sekeristreet,A
Tel: 360843 -6 Telex: $21-9185$
${ }_{\text {Al }}^{\text {INDIA }}$
 tTALY

Tel: 8530
JAPAN
Cornes and Co. Ldd. C.P.O. Box 158 , Tokyo $100-91$.
Tel: 27257771 Telex .124874
Tel: 272577771 Telex: $J 24874$
NEW ZEALAND
GEC
New Zealand) Ltd., P. P. Box
$50-244$, Porirua
GEC (New Zealand) Lto
Tel: 75409 Tele: 3421
Singapore

Singapore 21: Tel: 663011 Tele: RS21508
SOUTH AFRICA
Marconi SRouth Africa) Ltd.. P.O. Box 14289 ,
Men

SPAIN

TAIWAN
Hongkong Trading Co. Ltd. P.O. Box 724 , Taipe
Taiwan. Tel: $7719473 / 7719704$ Telex: 11017 PROTEXOL
TRINIDAD ANDTOBAGO Port-ot-Spaint, Trinidad W.
USA
EEVInc., 7 Westchester Plaza, Elimsford, N.Y. 10523.
Tel: 9145926050 Telexe: 710 5671 1215
MOV

Our new catalogue lists a card frame system that's ideal for all your module projects - they used it in the ETI System 68 Computer. And woxes - everything yoards, accessories, cases and ment the quality you demand. Send 25 p to cover post and packing and the catalogue's yours.

VERO ELECTRONICS LTD. RETAIL DEPT. Industrial Estate, Chandlers Ford, Hants. SO5 3ZR Telephone Chandlers Ford (04215) 2956

WW - 029 FOR FURTHER DETAILS

FOR POWER
 SEMICONDUCTORS

I

INTERNATIONAL RECTIFIER

Diodes Thyristors
Fuses for protecting Semiconductors Power Transistors Potted Bridges Solid State Relays

Silicon Stacks Surge Suppressors

IN A HURRY! 070-6814931

HARMSWORTH, TOWNLEY \& CO. LTD. HAREHILL TODMÓRDEN LANCS OLi4 5 JY Phone: 070681493

...NOT TO A PRICE
All models available from stock.

MIE

MTG (INSTRUMENTS) LTD. (Inc. HOYMIZAVONICSLTD)

Overseas Agents and Distributors.

The Netherlands. Reinaert Electronics. Blasiusstraat 14-16. 1091 CR Amsterdam, The Netherlands.
$\begin{array}{ll}\text { Denmark } & \text { PO Box 4299, } \\ \text { Transcan Electric APS. Mollevaenget 15. } 2970 \text { Horsholm, Denmark. } \\ \text { Kenya. } & \text { United Import Agencies. PO Box 43951. Naircbi, Kenya. }\end{array}$
Kenya.
Middle East.
United Import Agencies. PO Box 43951. Nairobi, Kenya.
EPIC. Electronic Precision Instrument Company, PO Box 1262.
EPIC. Electronic Precision Inst
Cairo, Arab Republic of Egypt.
Applications are open for Overseas Agents and Distributors.

What spec do you hate to trade-off when selecting switching power transistors?

With TRW's new NPN Switching Power Transistors you trade off nothing. You don't have to check a box. You don't have to give up superior perfor mance mone area to get it in the others. These new pars delive
Operation up to 450 Volts sustaining

- Fastest Switchtimes avail continuously
- Typical Saturation Voltages of 1.0 V at $7 \mathrm{Amps}, \mathrm{B}=5$ This no-compromise, no trade-off, 4 -way superi ority adds up to the coolest operation and greatest efficiency for high frequency off-line switching regulators, Class D Switching, and any other switching are essential which high voltage and fast witching are essential
Drop in TRW's new parts and test them yourself They're competitively priced and available from
MCP Electronics Ltd N6579 $80.81 \quad 350$

$2 N 6579,80,81$	$350,400,450 \mathrm{~V}$	5 Amp	TO-3
$2 N 6585,86,87$	$350,400,450 \mathrm{~V}$		

If those numbers are not now in your plans - well maybe you should design tharts is so pronounced At any rate you'll surely want to TRW's new NPN Switching Transistors

TREV POWER SEMICONDUCTORS

The world's smallest programmables can be music to your ears

CASIO
 FX-501P FX-502P

\qquad

FX-501p. 11 independent memories, 5 level parenthesis, 128 programming steps (non-volatie, 1 step performs a function)
FX-502P. 22 independent memories,
10

- 10 digit display of 10 digit mantissa with exponents up to 10 ± 99

 Duration of notes, rests, tempo, slur and tie are all programmable.

- FA-1 comes complete e with a demonantration casserte with pre-eceorded programmes, inclucing games and music.

CASIO accs $27 / 28$ 28

Almost certainly the slimmest and most sophisticated ALARM CHRONOGRAPH avaiiabie today

Prices include VAT at 8% and post and packing
Send your Company ordel, cheque of poskal Orders, or phone your ACCESS or BARCLAYCARD number to
whyPUS

 Tol: (0223) 312866

Now.. the next generation of bench DMMs!
Two New Keithley Models off
performance and outstanding valucompromising

- Accuračy $31 / 2$'s can't match $0.04 \%+1$ digit
- 20000 -count LED disia dc

Large, bright, 20,000 -count LED display that's quick

- Convenient bench size that won't get "lost" yet
doesn't crowd. Exceptional reliability

KEITHLEY
The measurement engineers
WW - O65 FOR FURTHER DETAILS

WIRELESS WORLD JULY 1979
39 Geer selu sepu STRUMECH ENGINEERING ELECTRONICS DEVELOPMENTS

$\star \star \star$ BUSINESS $\star \star \star$ EDUCATION $\star \star \star$

 $\star \star \star$ RESEARCH $\star \star \star$32K-56K RAM - DUAL MINI DISKS 566 K RAM-DUAL ${ }^{\prime \prime}$ "DISKS-IOMgDISK

seed system one prices from $£ 1500-£ 2500$
NEW-FORTRAN £80

seed system 12 prices from £4500-£12000

Suppliers of equipment to: Leading Universities, H.M. Government, Hospitals, Schools, Colleges and Small Business

VORTEXION

... a new addition to our family of amplifiers. The VTN 30 .
inputs. The other members of the Vortexion family are the system
and 2000, 50/70 watt and CP50 mains/battery amplifiers.
Contact Jennifer Hall - VORTEXION DIVISION. Clarke \& Smith Manufacturing Co. Ltd., Melbourne Works,
Melbourne Road, Wallington, Surrey. Tel. $01-6694411$ Ext. Telex Casint G 22574; Telegrams: Electronic Wallington.

66 where can I get an RF Generator nowadays that's easy to use, reliable, robust but not too expensive?

"Here"-AVO's new HF135-a really useful professiona RFgenerator ideal for repair bench or test lab Wide frequency range-eight bands from 100 kHz to 240 MHz . Calibration accuracy conservatively rated at $\pm 1 \%$ right across the range. Output level from $1 \mu V$ to 100 mV
$(\pm 6 \mathrm{~dB})$. AF Signal source facility 1 kHz) ($\pm 6 \mathrm{dBB}$). AF Signal source facility (1 kHz). Input for external ergonomically designed front panel and complete with connectors, crocoodile clips and the AVO guarantee of reliability, serviceability, and accuracy at a sensible price. For descriptive leaflet and name of your nearest stockist,
phone or write:

Avo Limited, Archcliffe Road Dover, Kent. CT17 9EN.
$\frac{1}{\text { nem }}$ Thorn Measurement Control and Automation Division
wW - 075 FOR FURTHER DETAILS

HANDY • VERSATILE • TOUGH • PRECISE

swict habie Hiand Lo ofn TouGH- built to take the

 the lileanten ow

Contact: (0) Farnell International

ww-077 FOR FURTHER DETAILS
the indispensable

THRULNE WATTMETER
Hz / 0.1-10,000 watts
The Standard of the Industry
What more need we say...
Exclusive UK representative
요 -3 electronics limited
2 KILDARE CLOSE, EASTCOTE, MIDDX. HA4 9UR
TELEPHONE: $01-8681188$-TELEX 8812727

The best connection for the tube you want.

Whatever industrial tubes you need,
you can be sure you'll find them in this extensive you can be sure you'll find them in this extensiven
collection of information-packed literature. collection of information-packed literature. tubes. Lasers to photomultipliers. Transmitting valves to receiving tubes. I.R. emitters to CCD Image Sensors.

Having this wealth of reference material on hand can save time, trouble and money. Apart from setting out data in the most clear and convenient way, you'll find that our booklets group products into types and outline major parameters.

These include selection, replacement, equivalents and characteristics tables that will help narrow your choice:
ust contact us for the best connection in tube you'll ever make

Crellon Electronics Ltd
380 Bath Road, Slough, Berks
Tel: Burnham (06286) 4434. Telex: 847571.

If we told you the best way to talk to your staff...

 what would you say? We can tell you how to talk to your secretary, your accounts clerk, your foreman - or to all of them at once. We duplex intercom system - for all your communication needs.

The first 100% British designed and manufactured duplex intercom system
Employs the smallest known control unit

- Offers paging facility as standard
- Conference facility up to 8 stations- also standard

Easies to install - Man competitive system
Easier to install-More standard facilities - And less

Barkway Electronics Ltd, Barkway, Royston, Herts SG8 8E
Telephone Barkway (0763 84) 666

W - OIO FOR FURTHER DETAIL

[^0]SOLDERING EQUIPMENT ©ADCOLA

has features other tools have not

50w electronic temperature control
total earth system
Ono mains interference
no moving parts LOW SAFETY
OPERATION r voltag
 ADJUSTABLE TEMPERA
WITHOUT BIT CHANGE

(Above) Soldering

(Above)
Soldering unit 101
showing two instrum
showing two instrumen
available
available
1015 Bariel length 45 mm
$101 T$ Bariel length 7 mm
(Right)
Soldering unit 333
the
Sildering unit 333
two instruments available
101T Barrel I length 67 mm
101TS Barrel l lengt 45 mm

\star Range of 10 ADIRON long life hit profiles available Sales Department
ADCOLA PRODUCTS LIMITED ADCOLA HOUSE, GAUDEN ROAD, LONDON SW4 6LH Telephone 01-622 0291/4 Telex 21851 ADCOLA ww-088 For further details

Send for our catalogue and price list!
All West Hyde cases are available with substantial discounts for quantities. The Mod-- Range have price breaks at 5, 10, 25,50 and 100 off (12%
discount 2 at 100 off). Prices include post and packing and are correct at press date. Please add 8% VAT. 10% discount is given on first two price WEST HYDE DEVELOPMENTS LIMITED, Unit 9 , Park Street Industrial Estata, AYLESBURY, BUCKS. HP20 1ET. Phone: Aylesbury (0296) 20441. Telex: 83570 wW - 054 FOR FURTHER DETAILS

TPA SERIES D - PROVEN POWER

Only the best designs stand the test of time. The reliable power of the TPA Series D has been a consistent choice of professional audio engineers.

- $19^{\prime \prime} \times 31 / 2^{\prime \prime}$ rack mounting
- Load sensing output protection circuits
- Stable into loads of any impedanc
- Available with
- TPA 100 D inc power transistors
- Available with a range of connectors and line
- TPA 100 D incorporates plug-in PCB's and

- AM 8/12 fits loudspeakers enclosures for
monitor purposes
- Conservative power rating 25,50 and 100W RMS. Full power at 15 ohms
- At 8 ohms power rating of 45,80 and

170W RMS

- Designed to operate in ambient temperatures in $-25^{\circ} \mathrm{C}+50^{\circ} \mathrm{C}$ range

$$
\text { in }-25^{\circ} \mathrm{C}+50^{\circ} \mathrm{C} \text { range }
$$

A battery of scopes

Three superb oscilloscopes from Telequipment which meet the demand
or dependable, accurate measurements in truly portable form.
The heavi And portable they certainly are.
will work from AC weighs less than 13 lbs and each one from integral re-chargeable ni-cad cells.
Choose from the single trace S22 with its useful 5 MHz bandwidith,
or the D34 with higher sensitivity in both channels up to 15 MHz .
For that unique combination of precision,
Telequipments portable oscilloscopes are unsurpassed
For your full catalogue and price list for Telequipment products - Circle No.

Tektronix UK Ltd, P.O. Box 69, Coldharbour Lane, Harpenden, Herts.
Tel: 0582763141 Telex: 25559

wireless world

TOM IVALL, M.I.E.R.E.
Deputy Editor:
PHILIP DARRINGTO
Phone 01-261 8435
Technical Editor:
Phone 01-261 844
Projects Editor:
Phone: 01-261 8429
Nows Editor:
Nows Editor: RAY ASHMORE, B.Sc., G8KY

Communications Editor:
ED PARRATT, B.A.
Drawing Office Manager
ROGER GOODMAN
Production \& Design:
ALAN KERR
Advertisoment Controlle
TON ROWEL
Advertisement Managor:
BOB NIBBS
Phone $01-2618622$
DAVID DISLEY
Classified Manage
Phinne 01-261 8508 or 01-261 8423
BARRY LEARY (Classified Advertisements)
OHN GIBBON (Make-up and copy)
hone $01-2618353$
Publishing Director:
GORDON HENDERSON

Information gap

If the new British government pays any attention to a Conservative Party before the election, it will be establishing a definite policy on information technology. The report ecommends for example that there hould be a government minister to be dustries and that strikes by p operating telecommunication and some computer systems should be made illegal. But although it deals with many social aspects of information hat ever-present fear of ordinary people that we are all being taken over by computers. This report above all should have made it clear that such anxieties can be dispelled by the proper Partly conditioned by novel depicting people at the mercy of machines, such as "Brave New World" and "1984," the public view of the advancing computer-state is one of
near horror. It is convenient for those in favour of unchecked collection of personal data that the villain of the piece is the device used to sift the evidence rather than the human intelligence at the controls. Add to this structural unemployment in the wake structural unemployment in the wake
of the silicon chip, and the computer really begins to emerge as a fully ormed monster.
dispelled by pointing out that, in spite of remarkable increases in memory capacity, no machine has yet been made which could be termed "intelligent" in more than the limited sense mentioned in our November editorial. It is even more important that people should be helped to grasp the inescapable fact that a computer is nothing without a program - that administered to a new born baby to make it breathe, without which the mechanism cannot function.
visions of a perfect society served by visions of a perfect society served by an impeccable technology, but realitie
such as atmospheric pollution and electronics in the service of war limit the fulfilment of such visions. One comes to the sad conclusion that,
without a sensitive and cautious without a sensitive and cautious approach to the widening problems of
the interface between the natural and man-made worlds, industrial unrest and social disruption must follow A great deal can be done, however by overcoming ignorance. communicate ideas should begin the attempt to bridge the information gap by showing real evidence of the advantages of data processing in time and labour saving and by describing not only in industry but in social services such as electricity supply, home heating systems and medicine where computer systems are in use. Such illustrations can be underlined
emphasising that electronics is still subject to control by human will and that as long as technical progress is directed with care it can do much to improve the human condition. It has been reported elsewhere that computerise all its PAYE
administration areas, and processing operations are to begin in 1984. This really isn't "Big Brother" looming as a certainly one to produce a knowing smirk on the face of a committed critic
of computers and data banks.
On the other hand, if we are no prepared to provide sufficient uninitiated we can hardly blame the for turning a deaf ear to our
protestation that all is well. At least, as far as we know all is well. If the worst should happen and 1984 become reality in 1994 some of us may only get the systems we deserve.

The loop aerial revived

Three designs for improving broadcast band reception

When the ferrite rod aerial came into general use in broadcast receivers the for many years fell into the author takes a fresh look at the loop and shows how it can be used to improve reception of distant and fringe-area m . and $I . W$. stations, particularly in the home. After a theoretical analysis and comparisons with ferrite rod and long wire aerials the article presents three designs at different levels of constructional complexity: a simple near (but not connected to) a set with a ferrite rod aerial; a large external loop which can be wound round pieces of urniture; and a small loop intended to be fitted inside the case of a receiver

NOW THAT a new frequency plan for he long and medium wave broadcas bands has been introduced into Europ larly after dark. There may therefore be an awakening of interest from reader and also from the general public) eceiving stations other than those of aerial whose pick-up properties are considerably superior to the ferrite ro incorporated into the majority of modern receivers.
Quite apart from long distance recep tion, there are also other situation for example, reception in a much large fringe area would be possible for th extensive local radio network which is developing. Looking further ahead, a.m. the United States at least), and presum ably this will call for an improved signal-to-noise ratio, for aesthetic if no for technical reasons. It would thus seem to be an opportune moment to
suggest that a good aerial which would meet the above requirements is nothing more than an old fashioned loop, which passed into a sort of technical twilight with the introduction of the ferrite rod. universally used for broadcast reception, and have been so for at least two decades. Prior to this a long wire external to the receiver reigned supreme, and in these cases a was required, which was often a part of the cabinet.

Going further back in time, some of the arliest radios often sported fram erials of large size and impressive apes. Why the rise and decline in th popularity of the loop should have oc or broadcast reception have long bee nown, but several minor reasons could be cited. One is that early loops could be easily mistuned by hand capacitanc effects, another is that of the added winding tune both the medium and the long waves (but then many parts of the world use only one waveband). Other may be difficult to receiver with a loop external to the main circuit board, the present day ferrite rod being convenient in respect of unitary construction, low magnetic

(b)

Fig. 1. A loop aerial immersed in an electromagnetic field. At (a) system of Eo-ordinates with vertical field strength E volts/metre, horizontal field angle between plane of loop and direction of propagation. At (b) the equivalent circuit with L_{l} inductance of loop, R_{l} loss resistance, and R_{r} tuned by capacitance C
assembly; it could simply be the whim of fashion. If this is the only re
manufacturers please take note!

The need for magnetic loop

 receptionThe easiest and cheapest aerial for broadcast band reception is almost cer
tainly a longish piece of wire. It gives far more signal than is necessary, and this allows the coupling into the input stage to be so weak that mistuning is minimal. Even a metre or so of wire is adequate if the coupling is increased, as can be
confirmed by checking the performance of one of the better car radios. Why, then, bother with anything else? The answer lies in the electromagnetic environment, which has become progressively more harsh. The average commutator type motors, innumerable on/off contacts, fluorescent lamps, and that arch villain, the television receiver. Outside of the mmediate area around lighting, high voltage power lines and many other sources all have the potential of causing interference. This is either conducted to the vicinity of the receiver by the mains, overhead lines,
etc. or is radiated. The net result parti cularly in urban areas, is interference which often is well above the natural background noise level.
Almost all the interference at the broadcast range of frequencies is
caused by relatively high r.f. voltages rather than by closed current loops. The electric, electromagnetic, and magnetic fields generated by such voltages can be described in terms of elementary elec tric doublets (see, for example, any quite straightforward, but for the pur pose of this article it is convenient to consider the coupling between the in erference source and a wire aerial as netic, the inductive (magnetic) effect being negligible. It can be shown that he capacitive coupling between two mall doublets varies as the inverse ube of distance, and thus the coupled way. Electromagnetic radiation also occurs, and this gives rise to a field which varies inversely with distance. A large distance from the source th
but near to the source the capacitive, critical distance where the electric an electromagnetic fields are equal is $\lambda / 2$ in the case of a small doublet, and a more more
A small loop aerial is not responsive o purely electric-fields, but only to the agnect it cax threading its area (in this n electromagnetic or magnetic field) nside the critical radius the loop will herefore have superior interferenc ejection properties compared with ould be superior to a loop if the inter onence were caused by closed curren paths, is also true but is not generally of interest in practice.
The superiority of the magnetic loop ver a wire aerial can be quite substan tial, particularly when the source is wavelength or the interference is con ducted. In this last respect, it is particu arly advantageous in suppressing tele ision line timebase interference, an eaders who have receivers equipped ion for a long wire can confirm this. A oop is therefore a natural choice for reception on the broadcast bands, provided that its pick up properties are demonstrated.

Loop and ferrite rod principle

Fig. 1 shows an electrically small loo e.g. all dimensions much smaller than he wavelength) immersed in an elec tromagnetic field. The field has a vert cal strength of E volts/metre and orizontal strength of H amperes angle θ to the direction of propagation. E and H are related by the well know expression $H=E / Z_{0}, Z_{0}$ being the chaacteristic impedance of free space. Z_{0} defined by the relation
$Z_{o}=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}=377$ ohms $=c \mu_{o}$
$\mu_{0}=4 \pi \times 10^{-7}$ henries $/ \mathrm{m}$ (free space permeability)
$=8.85 \times 10^{-12}$ farads $/ \mathrm{m}$ (free spac ermittivity) $=$ velocity of light $=1 / V \epsilon_{0} \mu_{0}$

The H field gives rise to a uniform flux ensity of $B=\mu_{0} H$ tesla and the loo rea A intercepts a total flux of BAcos i.e., $B(t)=B . \sin 2 \pi f t$
hen the flux rate of change is $B(t)=B .2 \pi f \cos 2 \pi f t$,
and a voltage V is induced into an urn loop of
$V=A N B=2 \pi f \dot{A N E}\left(\mu_{0} / Z_{0}\right) \cos \theta, \quad$ (i) dropped. By substituting for μ_{0} and Z_{0} and aligning the loop with the direction of propagation, the more familiar ex-
that a value for μ_{f} of between 50 and 150 expected.

Loop vs. ferrite rod

The relative performance of the two aerials can now be examined under the owing basic assumption ance (so that they tune with the same load capacitance) 2. Each aerial is electrically small and
there are no effects other than those there are no effects other than those
discussed. Before making the comparison the turns required for each type of aeria must be known.
The inductance of any single-layer
*For complete design details of a ferrite aerial
see Ref. 1. Also see the December 1978 issue of Wireless World for an interesting altern-
ative derivation of eq. (4)

LENGTH/ DLAMETER RATIO

Fig. 2. Relationship between effective

 length to diameter reio an length-to-diameter ratio of the rod.Fig. 3. Value of form factor K used in inductance calculations for a circular coil, as a function of the d to length lof the coil.
The induced voltage is injected in serie part of a tuned circuit, the output across the tuning capacitor is
$V_{1}=2 \pi f A_{l} N_{l}\left(\mu_{0} / Z_{0}\right) \cdot E \cdot Q_{l}$.
If a ferrite rod is slipped inside the loo crease being defined as the effectiv permeability of the rod and being de ferrite rod, eq. (3) becomes
$V_{f}=2 \pi f A_{f} N_{f}\left(\mu_{0} / Z_{0}\right) E Q_{f H_{f}} \quad$ (4) μ_{f} is a complicated function of the length to diameter ratio and, to a much of the rod material. Fig 2 shews th relationship*, from which it can be seen 9 $\because \quad \because \quad \cdots \quad$
-

0
 e 1

 (a)

50
coil can be calculated from the general
formula

$$
L=\frac{\mu_{0} A N^{2} K \mu_{e}}{l}
$$

where K is a form factor which is a function of the diameter d to coil length the magnetic material inserted into the coil. Values of K can be found from Fig. 3 , which is strictly valid for single layer coils of circular cross section. Rect allowed for by calculating a value for d based on a circular cross-section of the same area and the formula is also valic or thin multilayer coils. From eq. (5)

$$
N=\sqrt{\frac{L l}{\mu_{0} A K \mu_{e}}} .
$$

Substituting for N in eqs (3) and (4), a imensionless figure comparing th erformance of the two different type aerials is obtained:
$\frac{V_{1}}{V_{f}}=\frac{\mathrm{Q}_{l}}{Q_{f}} \cdot \frac{1}{\mu_{f}} \cdot \sqrt{\frac{l_{f}}{l_{f}} \cdot \frac{A_{l}}{A_{f}} \cdot \frac{K_{f}}{K_{l}} \cdot \mu_{e}} \quad$ (7).
Of the variables in eq. (7), the Q factor is electivity and in practice is equal both aerials. The effective permeability of the ferrite, μ, could be up to about 100 for rods of reasonable length, diameter, and material permeability. μ_{e} is typically rods used in practice.*
The other variables are at the discre tion of the designer, but to make the comparison as equitable as possible
identical coil geometries will be consididentical coil geometries will be consid-
ered. (In practice it will be found that different coil geometries will not make any significant difference.) Thus K_{l} is equal to K_{f}, l will be proportional to the square root of A, and eq. (7) becomes

$$
\begin{equation*}
\frac{V_{l}}{V_{f}}=\frac{\sqrt{ } \mu_{e}}{\mu_{l}}\left(\frac{A_{i}}{A_{f}}\right)^{3 / 2} . \tag{8}
\end{equation*}
$$

A typical cross section of a ferrite rod is $A_{f}=0.5 \mathrm{~cm}^{2}$ and for comparison a small representative will be taken, this being representative of one of the smallest
portable radio sizes which could include a 20 cm ferrite rod. Substituting these
figures, the ratio is found to be about 5 times or 14dB. Commonly available ferrite rods do not seem to exceed 20 cm in length, whereas many radios would allow for a larger oop, a $30 \times 50 \mathrm{~cm}$ loo

Performance

The traditional measure of performance (3); however this is ressed by eq. (2) or of gain, not a complete measure of performance, and a better indication can be had by finding how much noisier a practical
less) case.

* See previous footnote

Referring to Fig. 1(b), the loop con sists of an inductance (tuned by the
apacitor C, which is assumed to b lossless), a loss resistance R_{b}, and a ances appear in series and generat hermal noise according to their res pective magnitudes and absolute temeratures. R_{t} is at room temperature ${ }^{\prime} R_{r}$ has a much higher temperatur derstorms and man-made noise (in free space R_{r} would have a very low temperature). Denoting the ratio of the ritio of the noise powers of Fig_{1} l(b) to the lossless case is

$$
F=\frac{T R_{r}+R_{l}}{T R_{r}}=1+\frac{R_{l}}{T R_{r}} .
$$

F is a degradation factor, analogous to the noise figure of a receiver, which can be made to approach one by increasing creasing the size of the loop.
Substituting for the quantities R_{r}, R_{b} and L as follows:

$$
R_{r}=640 \pi^{4} \cdot \frac{A^{2} N^{2}}{\lambda^{4}}
$$

$$
R_{l}=\frac{2 \pi f L}{Q}=\frac{2 \pi c L}{\lambda Q}
$$

$$
L=\mu_{0} \frac{A K N^{2}}{l}
$$

F can be written as

$$
\begin{equation*}
F=1+\frac{Z_{o}}{320 \pi^{3}} \cdot \frac{\lambda^{3}}{T Q} \cdot\left|\frac{K}{A l}\right| \tag{9}
\end{equation*}
$$

The last term in square brackets is only a function of the factor K and the loop volume. From Fig. $3, K$ is a minimum hen the ratio d / l is a minimum, that is, when the coil is short. In fact, as the ance L tends to the expression.

$$
L \approx \frac{\mu_{0} d}{2}\left|\ln \frac{8 d}{u}-1.75\right| N^{2}
$$

(10)
where u is the diameter of the conductorm
$\left.F=1+\frac{Z_{o}}{320 \pi^{3}} \cdot \frac{\lambda^{3}}{T Q} \cdot \frac{2}{d \pi A_{i}} \ln \left(\frac{8 d}{u}-1.75\right)\right)_{(11)}$

Eq. (11) apparently shows that the degradation increases as the cube of the wavelength, an inevitable consequence proportional to λ^{4} whilst the loss res istance is only proportional to λ^{-1}. However, this is reckoning without the fects of background noise. Fig. 4, which shows background noise in the form of the noise temperature ratio T, 322 (Ref. 2) for selected CCIR report performance actually improves at longer wavelengths. What is also interesting is the distant man-made noise location; this varies roughly as λ^{3} and thus makes loop performance independent of wavelength.
The absolute levels at 1 MHz of all the curves are also of particular interest not only do they show that T is very
high, for example it is 55 dB for man made noise, but they also show that only for a small period during daylight hours in winter does the noise due to the man-made value For muly below time thunderstorm noise is dominant, and on this basis a design criterion which is often used in practice is the man-made noise curve of Fig. 4. Suband assuming the following typical values for the loop:
$A=0.1 \mathrm{~m}^{2}(\mathrm{~d}=35 \mathrm{~cm})$
$\mathrm{Q}=200$
$u=1 \mathrm{~cm}$
$\quad u=1 \mathrm{~cm}$
$\lambda=300 \mathrm{~m}$
gives a value for F of only 3.3 dB . Practically speaking, it means that even with comes from the background sind noise from the losses. Readers who are interested in pursuing the ultimate during he very short winter daytime and who are fortunate enough to be quite remote
from civilisation could note that a loop with a diameter of 2 or 3 m would be suitable. Whether such efforts are

Some useful designs

Those who wish to proceed with the anstruction of a loop aerial, but only worthwhile, can seek refuge in the field multiplier described below. The advan tage of the field multiplier is that no Having verified the performance they can proceed to a large external loop which still only calls for a minimum of alterations, and then finally to a pur pose designed loop complete with th

The H field multiplier

The H field multiplier consists of no ming more than a simple loop and 00-500pF tuning capacitor. Select a suitable cardboard box (the sort provided by the supermarket for bringing
home the groceries) with an open end cross section of about $0.1 \mathrm{~m}^{2}$ ($\mathrm{lft} \times 1 \mathrm{ft}$) Cut four pieces of hardboard a little smaller than the sides of the box and stick them with impact glue onto th inside walls. Then stick down the top
flaps onto this hardboard to make three layers. The result will be a rigid box with one open end which will withstand th

It is also applicable to the middie latitudes of
gauge wire.
Select, in order of preference: fairly trands of 22 -26 gauge wire; or seve twisting with a drill. Wind about 30 turns around the sides of the box spacing the turns evenly over a distance of about 15 cm . Fasten the two ends by able tuning capacitor in the middle of the bottom of the box. Connect the tw ends to the capacitor and the loop is omplete.
The above design relates to medium aveband coverage using a $300-500 \mathrm{p}$ by a factor of 5 will tune the long wav band. If a different value of tuning capacitor or if a widely different shape loop is used, the exact number of 3 .
Place a radio receiver using a ferrite rod near (but not too near) to the loop and select a weak station. Tune the loop and the signal level will increase by up will not be so noticeable on receiver with good a.g.c. characteristics or with strong signals, and so the weakest pos may be increased by moving tha ferrite may be increased by moving the ferrite
rod inside the loop or closer to the sides but a value of coupling of more than k
$=1 / \mathrm{Q}_{1} \mathrm{Q}_{f} \ddagger$ will cause severe mistuning. To understand why a passive device
can amplify a magnetic field can amplify a magnetic field, consider a
reasonably long loop. Then the inductance of such a loop is easily calculated and the series resistance R can be found from

$$
R=\frac{\omega L}{Q_{1}}=\frac{2 \pi f}{Q_{l}} \cdot \frac{\mu_{0} A N^{2} K}{l}
$$

The reason for choosing a long loop is to allow the shape factor K to equal one, but the final answer can be generalized to loops of any form.
The induced voltage is given by eq
(4), and can be expressed in terms of th (4), and can be expressed in terms of the H field by means of the relation $H=E$
Z loop when the series reactance is tuned out is

$$
\begin{aligned}
I=\frac{V}{R} & =2 \pi f A \mu_{0} H N / 2 \pi f A \mu_{0} \frac{N^{2}}{Q_{l} l} \\
& =\frac{\mathrm{Q}_{l} l H}{N} .
\end{aligned}
$$

(12)

The current I causes a uniform field of
in $/ l$ ampere turns per metre through out the volume of the loop, and thus

$$
H_{l}=Q_{l} H
$$

(13)

The effect of the loop is thus to magnify
the mutual in-
ductance.

Fig. 5. How to couple an external loop aerial to a ferrite rod aerial in a radio receiver. The extra coil is preferably made of thin screened cable (with its
outer braid earthed at one point only) and the inner conductor is connected outer braid earthed at one point only) and the inner conductor is connected
to the loop aerial by a twisted pair to the loop aerial by a twisted pair.
who find the apparent increase in reld strength incompatible with the it should of the conservation of energy, ductive be noted that the field is inture with the incident field.

The external loop

An alternative to the field multiplier is a largish external loop. Such a loop has the dual merit of being almost invisible and covering both the medium and long also be coupled into the receiver with an absolute minimum of modification. The loop can be constructed by winding a few turns of wire around the alternative is to use a single strip of thin foil hidden under the wallpaper, but if the latter suggestion is taken up the foil should be run well clear of any mains good interference rejection properties may be lost.
The area of the loop should be at least $2 \mathrm{~m}^{2}$ and preferably larger. By this can be made small and any mistuning
minimized. The orientation should be chosen so that the plane of the loop is within $\pm 60^{\circ}$ of the direction of propageceived the weakest station to received.
To connect the loop to the receiver a should be as short as is convenient. The coupling arrangement into the first uned stage depends upon whether a normal receiver aerial. If there is a ferrite rod, a coupling coil should be made from some fairly thin screene cable as shown in Fig. 5 . The outer braid should be earthed at one point only and onto the two ends of the inner conductor to form a screened coupling coil. The reason for the screening is to minimise electrostatic pick-up, but this is not absolutely essentia, ordinary insulated earthed by a high voltage capacitor say 0.005 microfarad
To simplify construction, initially wind a trial coupling coil from single ferrite rod; as a rough suide use 4 to 6

-
turns for a $2 \mathrm{~m}^{2}$ loop. Select a weak signal without the loop connected
Connect the loop and check that there is a large increase in signal strength; if not, add a turn and repeat with pro mining whether background noise can be heard above receiver noise. The turns on the coupling loop should be adjusted to give a compromise between senwhich will show up in different ways which will show up in different ways
but the most obvious is the appearance of stations on seemingly incorrect channels.
The act of adding the external loop has the effect of decreasing the tuning sitivity the input stage must be realigned. For large loops the degree of coupling can be kept sufficiently weak for the effect to be minimal, but i
should nevertheless be borne in mind is a simple matter to unglue the ferrite windings and to slide them along the rod, but this is a matter for the in dividual to decide.
If the receiver is designed only for use means of inductively coupling the loop into both the long and medium wave tuning coils is required. An easy and a few turns of wire around each coil and to connect them both in series with the twisted pair from the loop. One side of the twisted pair should be earthed via a high voltage $0.005 \mu \mathrm{~F}$ capacitor. No escan be given, but they can be found experimentally in the same manner as for the ferrite rod.
Design for an integral loop Most receivers sold today are portable aerial, and it is not likely that the public at large would accept the inconvenience of either of the two previous designs.

Fig. 6. Coupling arrangement for a low impedance loop aerial fitted inside the case of a receiver. Transformer is the first tuned circuit of the receiver circuit with a coupling coil added. The dummy
aerial, a pre-set inductor is used for aerial, a pre-set inductor, is used for
alignment purposes when the set chassis is separated from its case.

What is required is to incorporate the manner which enables it to be manufactured and serviced easily. A design which allows for these dual fea-
tures and for multiband operation is the low impedance loop with transformer coupling shown in Fig. 6. The low impedance (few turns) loop also gives the benefits of easy mechanical con-
struction and reduction struction and reduction of hand A suitable form of construction is a rectangular frame whose dimensions just make it a snug fit inside the receiver case. A low impedance loop is wound
spirally around the frame using copper tape. Spaces can be left by staggering the tape pitch so that control shafts can be inserted through the supporting frame. As far as practicable the tape should be wound over the entire width
of the frame, the object being to minimize the loop resistance. The number of turns should be chosen to give an inductance of about 10 microhenries.
Two thick flexible leads (ideally made of Litz wire) should be soldered to the a two-pin plug. The leads should be as short as possible and should form a twisted pair.
The coupling arrangements are-
shown in Fig. 6. The transformer is shown in Fig. 6 . The transformer is
really the first tuned circuit with an added coupling coil. As in the previous designs, for best results the coupling coil should be earthed at the centre
point and should be electrostatically screened from the secondary. The inductance of the secondary must be higher than that required to une with C because of the loading of the turns ratio between primary and secondary. Unfortunately there are no fixed formulae for determining the turns ratio M and the primary inductance L_{p} unless the characteristics of the However, a good approximation is to disregard them and to minimize the noise degradation caused by the coupling transformer losses (see the discase the design equations can be shown cose be:

$$
\begin{gathered}
M^{2}=\frac{L}{L_{l}}\left(1+\sqrt{\left.1+Q_{s} / Q_{D}\right)}\right. \\
L_{p}=\frac{L_{l}}{\sqrt{1+Q_{s} / Q_{p}}}
\end{gathered}
$$

(14)
$L_{s}=M^{2} L_{p}$
A common situation is $Q_{s}=Q_{p}$, in which case $L_{p}=L_{1} \cdot / \sqrt{ }$, and from this it detuning effect. To maximize perfor mance, both Q_{s} and Q_{p} should ideally be example, if $Q_{s}=O_{p}=4 O_{\text {, }}$ the trans-

Simple digital filters

Useful algorithms for digital computers in control systems
by P. A. L. Ham B.Sc.(Eng.), F:I.E.E. NEI Parsons Ltd

A classical method of stabilising or
modifying the response of analogue feedback control systems is to introduc phase-lag or-lead terms by simple RC
(sometimes RCL) filters. With the advent (sometimes RCL) filters. With the adve there is a need to provide similar facilit by means of a stored program. Digital systems can only operate by continuously re-calculating and outputting the control variable. They are thus inherently
sampled-data systems for which a rigorous mathematical analysis requires the use of the " z -transform". It is possible, however, to calculate analogue filter time-constants and Bode responses each time into Laplace theory, and the results can be applied very successfully in practice. This article shows that, if we are prepared to work within a similar estricted framework with digital systems, it is quite possible to design
useful digital filters in software using simple rules without becoming involved with z -transform theory.
DIGITAL FILTERS are constructed by means of algorithms which use the means of algorithms which use the
present and previous samples of both the input and the output data. It is an implicit assumption that the samples occur at fixed intervals of time, under
the control of a real time clock equivalent timing mechanism. Thus, if x_{n} denotes the nth sample in a train of data, then x_{n-1} denotes the previous sample. In the literature this sometimes appears as $x(n T)$ and $x(n T-T)$ where T meaning is the same. It is unfortunate that T has been used in this context since it has a universal connotation as the value of a time-constant; in the will use t to denote the time between samples and reserve T for its commoner meaning to avoid confusion.
In analogue filters we can find both active and passive designs employing of algorithms for digital filters is at least as wide. However, for the achievement of, say, a unity d.c. gain, or a frequency response which resembles that of a known analogue filter, the correct choice of design parameters must be
made, and it should be realised that without this a familiar result is unlikely to be obtained.
Filters which use in their algorithm Litz wire. One supplier of Litz wire known to
us is: Home Radio (Components) Ltd, 240
London Road Mitcham Surrey CR4 3HD (Tel: 01-648 8422); and one manufacturer is Fine Wires Ltd, P.O. Box 30, Mansfield Road Daybrook, Nottingham (tel: 0602 268251).
nly present and previous values of the input are called "non-recursive," whilst those which use present and previous
values of the output are called "recursvalues of the output are called "recursof feedback loop, they have the possibility of being unstable, and this, oo, must be taken care of by correct choice of parameters. In general, nonrecursive algorithms are useful for
generating frequency responses having generating frequency responses having
a zero, i.e. of a phase-advance characteristic, whilst recursive algorithms are useful for generating frequency responses having a pole, i.e. of a phase-lag low-pass characteristic
With all digital filters a useful respurposes is only obtained up to the frequency defined by the Nyquist rate i.e. $f=1 / 2$ t. Thus for a sampling interval of 10 milliseconds, an absolute limit of digital filter. It should not be assumed that the amplitude response is zero at higher frequencies - quite the reverse, as series of spectra are obtained depening on the frequency ratio. In the have a nuisance value, and so the components of input frequency around and above the Nyquist rate should be kept as low as possible.

Fig. 1. (a) Digital first-order lag filter, general network diagram; (b) analogue integrator circuit diagram; (c) analogue
ow-pass passive filter; (d) modified network diagram for digital low-pass filter when $K_{1}+K_{2}=1$.

At frequencies below the Nyquist rat some significant extra phase lags can b net with because of the existence of sample-and-hold operation. For practi cal purposes the phase lag at any parti proportional to the ratio between it and he Nyquist rate - with 45° occurrin when the input frequency is half the Nyquist rate. This will have to be con idered in working out the overall igital filter response.

Discrete or digital networ

diagrams
Analogue filter circuits are characte sed by a differential equation, which may be worked out from the origina component network. Digital system tion, which is an expression relating th present output to the input togethe vith certain of the previous inputs or Wutputs.
While i
While it is not a very close parallel to he analogue approach, a convenien pe obtained with the discrete, or digital, network diagram, of which a simple example is shown in Fig. 1(a). The onl unfamiliar element in these diagrams Z^{-1}. This denotes a unit delay equal to he sampling interval t. It will be foun easier in the first instance to avoid trying to invest the Z^{-1} symbol with any rather to regard it as a shorthand not or a storage register operation; the actual procedure will become clear in

$\cos ^{\text {(i) }}$| $\begin{array}{c}k_{1}=0.1 \\ k_{2}=1.2\end{array}$ |
| :---: |

Fig. 2. Digital first-order lag filter. Computed responses to unit step to show effect of varying K_{r}.

Fig. 3 (a) Digital first-order lead filter, general network diagram after
modification modification; (b) analogue analogue differentiator with one zero, i.e. unity d.c. gain.

Fig. 4. (a) Digital first-order filter with one pole and one zero, general network diagram; (b) circuit diagram for analogue differentiator with one pole, i.e. band limited; (c) circuit diagram for analogue one-pole, one zero filter (high-pass characteristic); (d) circuit diagram for analogue one-pole, one zero filter (low-pass
characteristic).
 box with the letter K inside denotes multiplication by K and a circle with arrowheads denotes addition or subtraction as indicated.

First order lag network (pole)

The simple first order linear difference equation for a
ten as follows:

$$
\begin{equation*}
y_{n}=K_{1} x_{n}+K_{2} y_{n-1} \tag{1}
\end{equation*}
$$

where $y_{n}=$ next output, $x_{n}=$ next input, $y_{n-1}=$ previous output, and K_{1}, K_{2}
are constant. This is represented by the diagram of Fig. 1(a)
The form of response obtained depends upon the values assigned to K_{1} and K_{2}. In particular the system is
unstable for all values of $K_{2}>1$. The particular case of $K_{2}=1$ is of interest, since it yields a response similar to an analogue integrator, i.e. with the Laplace transfer function

$$
\frac{\theta_{\text {out }}(s)}{\theta_{\text {in }}(s)}=\frac{1}{s T_{1}}
$$

The corresponding analogue circuit is
shown in Fig. l(b). The value of T_{1} is found by the relationship:

$$
T_{1}=\frac{t}{K_{1}}
$$

Three registers are required to carry
out this computation*, which is begun each time a new value of x_{n} is received at time-intervals t seconds apart. The irst register will be designated A and will be used permanently to store th value of K_{1}. Register B will store the receive the latest value of input $\boldsymbol{x}_{\boldsymbol{x}}$. As oon as a new value of x_{n} is received, it is multiplied by the number in register A nd added to the number already in terpreted as y. The becomes re ready tor the next input sample and until that time register B contains th test value of y_{n}.
The second case of particular interes when $K_{1}+K_{2}=1$. This yields a res filter, i.e. with the Laplace transfe function:

$$
\frac{\theta_{\text {out }}(s)}{\theta_{\text {in }}(s)}=\frac{1}{1+s T_{1}}
$$

The correspond.thg analogue circuit is shown in Fig. 1(c). The value of T_{1} is obtained from equation (3) as pre viously.

For computational purposes it is bes to re-write equation (1) so that we ar
*Some of the registers may be located in memory; depending on the processor, other
memory/register or register/register memory/register or re

WRELESS WORLD, JULY 1979
left wit
follows:

$$
\begin{equation*}
y_{n}=K_{1}\left(x_{n}-y_{n-1}\right)+y_{n-1} \tag{5}
\end{equation*}
$$

This is represented by the diagram of Fig. 1(d). The computation can be carmanner to that previously. As soon as the value of x_{n} is received in register C the contents of register B must be subtracted from it before it is multiplied by the contents of register A. The result is register B to complete the cycle.
The variety of responses obtainable from equation (1) can be well illustrated by computing the output resulting from $t=0.01$ and $T=0.1$ for four representative cases shown in Fig. 2. They are as follows
unstable case where $K_{2}>1$
(ii) integral action where $K_{2}=1$ $K_{1}+K_{2}=1$
non-exponential response where $K_{1}+K_{2}<1$
Note that the initial slope is in each case defined by K_{1}.

First order lead network (zero) The simple first-order linear difference written as follows:

$$
\begin{equation*}
y_{n}=K_{3} x_{n}+K_{4} x_{n-1} \tag{6}
\end{equation*}
$$

where x_{n-1} is the previous input and K_{3}, K_{4} this expression straight away into the following form:

$$
y_{n}=L_{1}\left(x_{n}-x_{n-1}\right)+L_{2} x_{n}
$$

where $L_{1}=-K_{4}$ and $L_{2}=K_{3}+K$. represented by the diagram of Fig. 3(a) This expression is always stable and, as in the case of the first order lag, particular values of coefficient are of interest. If $L_{2}=0$ the response is similar
to that of an analogue differentiator, i.e. with the Laplace transfer function:

$$
\begin{equation*}
\frac{\theta_{\text {out }}(s)}{\theta_{\text {in }}(s)}=s T_{2} \tag{8}
\end{equation*}
$$

The corresponding analogue circuit is shown in Fig. 3(b). The value of T_{2} is found by the relationship:

$$
\begin{equation*}
T_{2}=\frac{t}{L_{1}} \tag{9}
\end{equation*}
$$

The particular case of $L_{2}=1$ is also of interest, since it yields a response simi-high-pass filter, i.e. with the Laplace transfer function:

$$
\frac{\theta_{\text {out }}(s)}{\theta_{\text {in }}(s)}=1+s T_{2}
$$

The corresponding analogue circuit is
obtained from equation (9) as before. The computation for either result in with four (8) or (10) can be carried out ashion to regaters in a very simila filter. There is, however one facto which may have some practical bearing namely, that it becomes necessary use the output register to store an in ermediate result. If there is an during the short period of time that the output register is holding an inte mediate calculation, it may be prefer able to employ an extra register for this purpose and only transfer the fina intermediate computations have bee completed. This comment should be noted for any of the more comple filters which follow.
Network with one pole and one zer The linear difference equation for a written in the following form:
$y_{n}=M_{1} x_{n}+M_{2} x_{n-1}+M_{3} y_{n-1}$
where M_{1}, M_{2} and M_{3} are constants. This is represented by the diagram of Fig. 4(a).
The characteristics of equation (11) depend, as before, on the values of coefficient used. Only two such results high-pass filter where the equivalent Laplace transfer function is as follows:

$$
\begin{equation*}
\frac{\theta_{\text {out }}(s)}{\theta_{\text {in }}(s)}=\frac{s T_{1}}{1+s T_{1}} \tag{12}
\end{equation*}
$$

The corresponding analogue circuit is hown in Fig. 4(b). For this characteri tic to apply, we must mak

$$
M_{1}=-M_{2}=1
$$

and

$$
\begin{equation*}
M_{3}=1-K_{1} \tag{14}
\end{equation*}
$$

where K_{1}, T_{1} are given by equation (3) For computational purposes th number of multiplications required ca

群 tion (11) as follows:

$$
\begin{equation*}
y_{n}=\left(x_{n}-x_{n-1}\right)+\left(1-K_{1}\right) y_{n-1} \tag{15}
\end{equation*}
$$

Five registers are required to carry out his computation. The computed res ponse of equation (15) to a unit ste put is illustrated in Fig. 5 for $t=0.0$ nd $T=0.05$.
The other equivalent Laplace transfer

$$
\begin{equation*}
\frac{\theta_{\text {out }}(s)}{\theta_{i}(s)}=\frac{1+s T_{2}}{1+s T_{2}} . \tag{16}
\end{equation*}
$$

The corresponding analogue circits are shown in Fig 4(c) and (d). For thi characteristic to apply we must make

$$
\begin{gathered}
M_{1}=\left(K_{1} L_{1}+K_{1}\right) \\
M_{2}=-K_{1} L_{1}
\end{gathered}
$$

$$
\begin{equation*}
M_{3}=1-K_{1} \tag{11}
\end{equation*}
$$

where K_{1}, L_{1} are related to T_{1}, T_{2} by the same expression as equations (3) and (9) While it is not in general possible While it is not in general possible avoid the need for three multiplications
with this filter, it is probably better from with this filter, it is probably better from write equation (11) as follows

$$
\begin{align*}
y_{n}=\hat{R}_{1} L_{1}\left(x_{n}-x_{n-1}\right)+ \\
K_{1} x_{n} \times\left(1-K_{1}\right) y_{n}
\end{align*}
$$

even registers are required to carry out his computation.

General network

The foregoing sections have shown how to build up to a one-pole, one-zero digital filter by progressively mor complex networks. It is, in fact, possibl comprehensive equation with a singl table of constants so that any desire transfer-function may be obtained by straightforward substitution. The equa

Alternative forms of filters If we look at the diagram of Fig. 4(a) we
can easily see that it is identical principle to Fig. 3(a) followed by Fig. 1(a). Since impedance problems do not
Fig. 6. (a) Alternative form of digital first-order filter; (b) canonic form for
general network of order r; (c) direct general network of order r; ((c) direct
form for general network of order r.

Table 1: constants in the equation
 functions

	A	B	K_{1}	L_{1}
$1 / s T_{1}$	1	0	t / T_{1}	0
$1 / 1+s T_{1}$	1	1	t / T_{1}	0
$s T_{2}$	0	1	1	t / T_{2}
$1+s T_{2}$	1	1	1	t / T_{2}
$s T_{1} / 1+s T_{1}$	0	1	t / T_{1}	T_{1} / t
$1+s T_{2} / 1+s T_{1}$	1	1	t / T_{1}	t / T_{2}

exist with digital filters, an equally vald alternative is to reverse the order as shown in Fig. 6(a). In fact, as soon as we get on to more complex, i.e., higherorder filters a number of different diagram configurations are possible each of implementing the digital filter.
Thus the diagram of Fig. 6(b) is another theoretical equivalent, known as canonic form, in which the same delay is
used to both the pole and the used to both the pole and the
zero.Hence it is found that the number of delay terms is equal to the "order" of the difference equation. Yet another version is illustrated in Fig. 6(c) and this is known as the direct form. For forms, such as the serial, parallel or coupled forms can be devised
This may all seem confusing, but in practice it is not so because it is direct or canonic forms for any filters higher than second order. This is because it turns out that the actual values of the poles and zeros are an excessively sensitive function of the multiplyin
coefficient in the difference equation As a general rule, it is always safer use cascaded first or second-order algorithms for any more complex filter equirements. Indeed, for most run-of he needs can bystem requirements with cascaded first-order filters only which we have adequately covered in the previous sections. Certain fields such as communications, operate in a quite different realm of complexity and it may be necessary to go beyond these basic ground rules, the reader would be well advised to refer to the literature

Problems of accuracy

In previous sections we have defined In previous sections we have defined the equivalent analogue time constants
by the simple expressions of equations (3) and (9). The strictly accurate expression derived from z-transform theory takes the following form for pole or zero:
K or $L=1-\mathrm{e}^{-t / T}$
(21)

In fact, it can easily be shown that if $T \gg t$ then the value of K becomes very
close to (t / T). By reference to Fig. 2 (iii), the effective error in time-constant value when $t / T=0.1$ is less than 5%, which would normally be regarded as quite reasonable by analogue system standards. In cases of doubt the correct The expressions of equation (9) are correct for the pure integration and differentiation cases; what we have done is to use the same expressions for more uniform and physically meaningful approach at a practical level. A further, and perhaps more serious, class of problems that the programmer able. It is always necessary to have regard to the numerical values of intermediate computations in any digital
filter algorithm; with a poor choice of algorithm the values may become excessively large, or small, so leading to parameter truncation or quantisation effects. These are equivent to saturasystems.
Difficulties of this kind are particularly severe with 8 -bit microprocessor implementations, which suffer from the tion sets generally that the instrucmultiply/divide facility. A software multiplication, however, is not particularly difficult, even though the number of program steps may be appreciably Digital described here lend themselves quite well to calculation (but not in real time) on a programmable calculator, provided that it has an adequate number of independently addressable memories, so
that previous values of the input and output can be automatically entered for the next computation every time the start button is pressed

Acknowledgement. The author is grateful to the directors of NEI Parsons limited for permission to publish this article.

References

(ignals," McGraw-Hill 1969 Rad processing of ignals," McGraw-Hill 1969 World, October 1976, pp. $47-49$. Gerald Garon, Letters to the Editor, ibid T. A. Perkins, Letters to the Editor, ibid July 1977, p.59.

Faraday and fusion

An extraordinary pulse transformer which
induces a current of 3 million amperes in a shorted single-turn secondary is being built
by a European team in the heart of the by a European team in the heart of the
Oxfordshire countryside. The single-turn secondary is not metal but a ring, or torus, of ionized gas held floating by magnetic fields in
the middle of a toroidal vacuum chamber which surrounds it. The apparatus is in fact a research machine for investigating the possibility of generating electrical power in
the future my means of nuclear fusion - the process that goes on in the sun and, uncontrolled, in hydrogen bombs. Known as the Joint European Torus (JET), it is one of
several machines of this type being built in several machines of thistype being build in
different parts of the world but is claimed by the director of the collaborative research project, Dr Hans-Otto Wuster, to have "the
largest capability" and that it will "get closer lo the nuclear fusion reaction" in an actual reactor than any other machine.
It is because of the enormous It is because of the enormous cost of the
project (about $£ 125$ million at 1977 prices) project (about $£ 125$ million at 1977 prices)
that it has had to be a collaborative effort, and the group organization, called the JET
Joint Undertaking, includes Euratom, the Joint Undertaking, includes Euratom, the
nine EEC countries, Sweden and Switzernine EEC countries, Sweden and SwitzerJET, is alongside the UKAEA's fusion
research laboratory at Culham, near research laboratory at Culham, near
Abingdon, Oxfordshire, and the foundation stone for this was laid on May 18 by Dr Guido Brunner, the member of the European Com-
munities Commission responsible for energy mund science. It's historically appropriate that Britain should provide the site for such a machine because it was in this country that
Faraday discovered the phenomenon of Faraday discovered the phenomenon of
electromagnetic induction and demonstrated it in his magnetic induction ring - the first transformer, incidentally a torus - by
sing the direct current in the primary.

In JET one purpose of the 3MA curre induced in the ionized gas - a mixture o hydrogen - is to partly heat it. Ultimately the gas is heated by other means to a temperature of over 100 million degrees C in orercome their mutual electric repulsion and collide at sufficient speed to produce thermo nuclear fusion reactions. When the nucle converted into energy ($E=m c^{2}$) in the form of neutrons, which fly off and, in an actua eactor, would produce heat in a surroundin of fusion reactions by this process the ionize gas, or plasma, must be confined and isolate from its surroundings. In JET this is done by fields to act on free electrons and ions. Part of the magnetic field pattern which confines the hot plasma is provided by shaped coils linking the torus. These give magnetic flux density at the centre of the poloidal field is generated by external fiel coils and by the toroidal electric current 3MA induced in the plasma. The effect of of force of the main toroidal field so that they have a helical pattern, as shown in the diagram. The result is a "magnetic bottl"", in which no field lines escape and the charge this type of confinement are known as tokamaks (from a Russian word for toroida magnetic chamber) and a number of them
have been operating in various parts of the world - including one at Culham called DTEE - since the late 1950s.
Because tokamak operation depends on
the existence of the plasma current, which is
induced by transformer action, the machine essentially a pulsed device. In fact the fiel about 20s, once every ten minutes. The perating sequence begins with the ene izing of the toroidal and poloidal field coll (the vacuum chamber having been evacu primary current responsible for the trans ormer action is now reduced and the chang
duces a voltage of about 150 V around the orus. This voltage ionizes the gas, forming pasma, and produces a current in it. The poloidal field circuilis hen and is maintaine or the pulse duration.
The closeness with which a tokamak eactor - producing net energy - depends on a combination of plasma temperature plasma density (number of particles in uni olume) and the time the
re confined within the torus during the pulse action.

Poloidal directio Toroidal "magnetic bottle" to confine plasm produced by combining toroidal an poloid
lines.

NEWS OF THE MONTH

Buying British Electronics

Ivor Cohen, managing director of Mullard
Ltd, gave a definite "no" in answer to the question ""will the electronics buyer be able held by the Institute of Purchasing and Supply on May 15 . This answer was given on condition that what was meant was the
buying of the majority of the UK's combuying of the majority of the UK's com-
ponent requirements from semiconductor manufacturing companies based and owned in the UK. He said, "You cannot do that
today and you will not be able to do it in the today and you will not be able to do it in the
future". He did add, however, that if the buyers were to buy from UK companies who had a substantial base in the UK with a
commitment to continuity of operation, not one which merely handled products designed abroad but one which initiated its own designs, the country would have a much
greater chance. To do this, he said, it would require much work on the part of the equipment makers, the component makers and the
Goverrment to create the right environment The United States and Japan dominate the
main electronics markets because they have
large home markets which enable them to
have steady have steady and large volumes of production,
which are essential in this sector of the industry.
The European countries unfortunately do not stick together enough, in terms of standards and specifications, for Europe to gain a similar foothold and so in these coun-
tries the component companies and equipment companies become more dependent on
ment each other. The other ingredient needed, of
course, is unlimited finance - or as Arthur course, is unlimited finance - or as Arthur
Garratt, director of Value Management Consultants, put it in the conference's closing speech "a bottomless pocket". The Japanese
success story is the result of such a bottomess pocket, created by the industrial, commercial and banking set-up in their country and the
unlimited support that manufacturers appear to get from their government. UK buyers would the to buy British or European every time but
the situation described often forces them to turn to either the Americans or the Japanese for components.
Dr Ian Mackintosh, chairman of Mack-

The NEB and INMOS under a new government

The Conservatives, by their election
manifesto, are committed to sell off the manifesto, are committed to sell off the
National Enterprise Board's better assets, cut back its future finance and reduce its role to
that of a hospital for lame ducks' that of a hospital for lame ducks.' However,
despite this, the NEB is preparing a totally new project of its own - to build a $£ 10$
million titanium granule plant in Teesside in milion titanium granule plant in Teesside in
association with Rolls-Royce and Imperial Mir Leslie Murphy, the NEB chairman, argues that the change in government should
not mean any fundamental change in their not mean any fundamental change in their
corporate plan, but its main effect will be to intensify the course that they are already taking, "in seeking greater joint ventures
with the private sector". According to an with the private sector". According to an
Observer (May 13) report Sir Murphy is abready preparing plans to suggest to the
Government, proposing greater private Government, proposing greater private
shareholding in NEB companies, and wanshareholding in NEB companies, and wan-
ting to offer shares in sectoral groupings of companies in areas such as computers and electronics. He is also prepared to accept a
reduction in the increased funding planned by the Labour Government - something he was against anyway. His apparent wish is to
see the NEB operating broadly see the NEB operating broadly along its
present lines but it is more likely that Sir present lines buil it it more likely hat Sir
Keith Joseph will attempt to sell off as many of its assets as he can. The problem, however,
is what to sell. is what to sell.
in small companies and some of these, the microolectronics venture INMOS included,
are high-risk, high-cost concerns which are high-risk, high-cost concerns which
would not easily be absorbed by other com-
panies or the City of London. The mor successful holdings, such as Ferranti, could
be absorbed quite quickly by the institutions Le absorbed quite equickly by the institutions
Left to fight on its own INMOS would almos
certainly certainly collapse but it could be saved if Sir caution and constraint make Sir Keith change his mind.
A table of the NEB's computer, electrical
and electronic holdings excluding the and electronic holdings, excluding the newly is shown below.
The new Gove
The new Government will have to decide a wholly-owned subsidiary of Berec Group Ltd, or whether it should retain its 51% share the company.

Table of the NEB's computer, electrical and electronic holdings showing the NEB's
hareholding, and the turnover and prot for 1978. *INMOS and turnover and profits fully operational. Minus quantities represe

tosh Consultants Ltd, said in his paper that even allowing for the many remaining
strengths of the American i.c. industry which presently leads in the western world here could be no doubt that the balance from the United States. He concluded that the US domination of this important industreplaced first by a condition of approximate
reven and parity between America and Japan, who
would possibly be joined later by Europe.

Investment programme boosis electronic

 exchangesMr Peter Benton, the managing director of April 25 when heommunications, said on April 25 when he opened a TXE2 exchange at
Hagley, near Stourbridge, that the number of electronic telephone exchanges in Britain would double during the next five years. This million a year investment programme to provide a better service for their customers, whose number grows by more than one million every years. "In this programme," M
Benton said, "the Post office will be instal ling electronic telephone exchanges at an
overall rate of more than four a week during overall rate of more than four a week durin
the next five years, at an average cos next five years, at an average cost
pproaching $\mathrm{f1}$ million per exchange. With spending of this order, exchange modernisa ion is the largest single element in ou investment programme, and the Post Office
is funding virtually all of this programme
from its from its own resources."
The Hagley exchange is part of this in XE2 exchange to be opened by the Post ffice. Supplied by Plessey Communications td, (the other TXE2 suppliers are GEC and
TC), it is one of the larger exchanges to STC, it is one of the larger exchanges to customers initially, it can be extended to
caterfor up to 7000 Since the first production cater for up to 7000 . Since the first production
TXE2 was opened at Ambergate, Derbyshire TXE2 was opened at Ambergate, Derbyshire
in 1966 , the Post Office has spent $£ 160$ million on providing electronic exchanges, and over the next five years they plan to spend at least
another $£ 150$ million, bringing a further 650 new TXE2 exchanges into service during this period. By 1984 they expect nearly three
million customers to be served by this type of exchange.
The Post office is also spending over $£ 800$ million on more then exchanges are designed for denselypopulated areas. There are already 17 TXE4 exchanges in operation, and these provide an
improved telephone service for about 100,000 customeds. By 1984 there should be at least
350 of these 350 of these exchanges serving more than

System X on view to the world

At last Britain's fully electronic telephone
switching system - System X - is to appear switching system - System $X-$ is to appear
as a working reality, and not just a lot of guarded statements about plans which is all it seems to have been to most people so far. A
working local exchange for about 250 subworking local exchange for about 250 sub-
scribers using this technology will be on view to the public at the Telecom 79 exhibition in the Palais des Expositions at Geneva, 20-26
September. This will be the centre-piece of a September. This will be the centre-piece of
joint Post office and UK telecommunications industry stand showing the latest
British products, systems and services in this British products, systems and services in this
field. Among them will be new telephone facilities that will be available to customers on System X and a demonstration of how the
management and maintenance of the system may be centralized. Later, one of the first two production exchanges will be installed in Baynard House, a major new Post Offic tions soon to be opened in Victoria Street, London. X has been jointly developed by
System
the Post Office GEC Plessey and STC and is the biggest single telecommunications pro ject ever undertaken in the UK. The Post
Office alone has contributed $£ 150 \mathrm{~m}$ to the Office alone has contributed $£ 150 \mathrm{~m}$ to the tioned will be the contractors manufacturing various parts of the installations that wil
follow; and all four organizations have together to form a new company, British Telecommunications Systems Ltd, whose purpose is to sell System X overseas. In spit switching systems originating in other coun tries, particularly Japan, the new company,
which is managed by John Sharpley, expects o be able to sell System X successfully America - the Misdle East, Asia and soile most likely being Ahe Middde Easts according to Sharpley. But
Sir William Barlow, chairman of the Po office, claimed recently in London that System X is in any case viable solely on the is currently spending 5250 m por is currently spending $£ 250 \mathrm{~m}$ per year
switching systems, he said, and once the new system gets started it will progressively displace other switching systems now bein budget. Modernisations should be complete in 1992, he said. Meanwhile any So far the Post Office has System X exchanges, worth approximately T12m, to come into service by the end of 1982 These include five local exchanges, a
Woodbridge (Suffolk), Arrington (Cambridge), Brixton (London), Hale (Cheshire) and Drighlington (Leeds). There are also two unction exchanges - local exchanges - at Baynar House, London and Lancaster House, Liver pool. The eighth exchange, at Cambridge, is main network switching System X does its switching entirely elec ronically by means of integrated logic stored program. Calls are set up, faults are dentified and the whole system is managed by computer like processes. Consequently he software is crucial to the design. Des
nond Pitcher, managing director of Plessey Telecommunications and office systems
claims that this software is the cheapest and
The Post Office's
1000t TXE2
electronic
telephone
exchane at
Hagley, near
Htourrbridge. Here a
technician is seen
fithing an adapptor
into the automatic
switching system.

most effective now available in the world for telephone switching. The system also uses common channel signalling, a technique in
which the signals controlling calls and managing the network are passed between the System X exchanges as data transmis-
sion. Finally perhaps the most interesting sion. Finally, perhaps the most interesting
development from the electronic design point of view is that the transmission and switching functions are integrated into gital mode of operation. The speech an other signals are digitally encoded at an
information rate of $2.048 \mathrm{Mbit} / \mathrm{s}$ and a common method of time-division multiplexing is used in both transmission and switch in equipments. Integrated circuits used include
c.m.0.s., n.m.o.s. and 10 W power Schottky
According to Roy Harris, director of the According to Roy Harris, director of the
Post Office's telecommunications. system strategy, components are chosen for their puitability for automatic production.

Black box protection in arms race

A report in the Baltimore Sun (May 16) says that the Amer Beans wish to plant compliance with an arms treaty. The monitors, which the Russians have so far rejected, would contain seismic and computer equip-
ment. According to a Daily Telegraph (May ment. According to a Daily Telegraph (May
17) report from Washington, the Carter Administration is considering bringing a team of Russian ex
examine the devices
The Carter plan is related to present talks in Geneva on a nuclear test ban treaty bet ween American and
taking part in these talks

Solar-power satellite interference

At an IEE meeting in Aprili it was made clear
hat solar power satellites, intended to take power from the sun, convert it to microwaves and beam it to earth, may produce so much dio frequency interference that the idea or sing them may have to be abandoned. The high powers - from 5 to 10 GW - which ould be transmitted to earth. It would require only a small
severe interference.
The ground-receiving array, which would lectricity would, according to into usable tative of the Electrical Research Association, produce megawatts of harmonic radiation
tion and magnitude. A Home Office spokes-
man from the Directorate of Radio Techno logy said that further interference problems would result due to the microwave beam being scattered by plasma interactions in the ionosphere and by raindrops. The beam could
also have an heating effect on the ionosphere.
Because of the lack of suitable areas on delivering power to Europe would be offshore. Patrick Collins, of Imperial College London, who is making a study of offshore,
collectors, says that the lowest cost of collectors, says that the lowest cost of
floating antenna elements of a kind suitable for this is twice that of a land-based system.
(Ref. New Scientist May 3, 1979).

Radar shows earth-like features on Venus

Pictures of an 80 -million square kilometre
area of Venus, obtained by a new higharea of Venus, obtained by a new high-
resolution ground-based radar at Arecibo Observatory, Puerto Rico, are providing the
most comprehensive view ever seen of the
planet's surface They show a wide variety of most comprehensive view ever seen of the
planet's surface. They show a wide variety of
terrains, some similar to those on earth and terrains, some similar to those on earth and
some resembling those on the moon, which some resembling those on the moon, which
cannot be observed using optical telescopes cannot be observed using optical telescopes
because they are permanently hidden be-
neath a thick because they are permanently hidden be-
neath a thick cloud layer. The findings indicate that volcanic and mountain-building
processes similar to those on earth, and processes similar to those on earth, and
meteoric impacts, have played a prominent role in shaping the surface of Venus. According to a report from NASA the some 320 km in diameter, most of which have prominent central peaks similar to those
found in many of the Monnts found in many of the Moon's craters. The
Venusian craters, like the lunar ones seem to be the result of the impacts of large meterites and appear to have
dust-like material on their floors.
mountain ridges of the Appalachian Moundunes in the Arabian peninsula. A central dark object inAlpha suggests that the region may contain a volcano. Another region of the planet which is
prominent on the radar pictures is an area prominent on the radar pictures is an area
known as Beta. This is about 800 km in diameter and has long tongues of rough as 480 km . Beta also has a central dark feature which resembles part of a volcano. Information from NASA's Jet Propulsion Laboratory
in Pasadena, California, suggests that Beta has a height of about 10 km .
Two parallel ridges extending more than
960 km have been found in another area of
Venus. These ridges are about 2100 m high
and form a structure exceeding the Grand Canyon in size. The Arecibo Observatory is part of the
National Astronomy and Ionosphere Centre which is operated by Cornell University under contract to the National Scienc Foundation. However, the radar programme, Barbara A. Burns and Valentin Boriakoff, is In addivition to the support from NASA. In addition to the ground-based radar
studies, scientists associated with the Pioner Venus orbiter are using a mapper instrù ment to determine altitude variations of the
Venusian surface. The information obtained Venusian surface. The information obtained
rom both of these studies is expected to provide a large-scale picture of the planet's
surface.

Regulo 4 receiver no danger to user

A housewife from Wychbold near Droitwich
claimed that she claimed that she was receiving "all sorts of seems to be coming from one of the rings" "It seems to be coming from one of the rings."
Well, we had heard of home-brew receivers, "ringing" tuned circuits, oven crystals and hot anodes, but this, at first anyway, sounde like a cooked-up story.

In fact, her home is very near to the Droitwich transmitter which apart from radiating a standard 200 kHz frequency, also
broadcasts Radio 4. Because of the high radiation power of the transmission, the electric field near her cooker could be developing tens of volts per metre and this acting
on a piece of metal of about one metre length will induce this magnitude of voltage acros trusty-bolt heffect" something called the "rusty-bolt effect" takes over. This occurs as with an oxidised junction between them acting like a diode or cat's whisker. The "antenna" as a modulated carrier envelope.
" This is rectified, or detected, by the oxide
unction and produces an audio signal by the ring probably. No amplifier is required due to the already high voltage involved, and the carrier is automatically removed becaus its relatively high frequency is too far away
from the natural frequency of the cooker parts.
In a Daily Mirror report, whēre this story
. appeared, a BBC spokesman said, "There is electronics engineer at first but it is a very radiation powers of broadcast transmitter and the ever-growing size of industrial structures, it is possible for voltages to be
indued capabe of induced capable of igniting gas or oil (se
News p. 74 Oct. 1978 issue). It has not hap Newsed yet as far as we know but radio and
pefinery refinery engineers should bear this in mind as
they are aware that they are approaching the they are aware that they are approaching the
critical powers and sizes. However, as can be seen from our previous report, investigation be
have shown conditions to be have shown conditions to be esafe so far and it
is doubtful whether the housewife will ever be afraid of her gas cooker on this score.

Tories give fourth tv channel to IBA

One of the highlights of the Queen's speech pening the new Parliament on May 15 was that the Tories propose to lay before Parlia
ment a a bill to "extend the life of the Independent Broadcasting Authority for a further eriod beyond the end of 1981 " and to give it "the responsibility - subject to stric
safeguards - for the fourth tv channel." The BA will be able to to make appropriate use of the resources of the ITV companies, in particular to ensure that the extra channel
not become a burden on the tax payers. Lady Plowden, the IBA chairman, said afterwards "We welcome the proposal in the Queen's speech to authorize the IBA to operate the fourth tv channel and look for-
ward to discussing with the Government the detailed arrangements". An IBA spokes the Authority wanted all along. "We have
been asking for a second channel for don-
key's years', he said. What happens now really depends upon what appears in the bill which is presented to Parriament. On the technical side at least,
it is expected to make little difference to the Broadcasting Authority network anyway The differences will occur in the program. ming and financing side. The OBA was never intended to be totally Government-funded fin was hoped that it would eventually become
financially autonomous - and the IBA will
initialy initially require Government assistance in the initial stages in any case. One argument
for the OBA was that it would help the independent producer who wishes to get his programmes broadcast. Safeguards proposed
by the IBA should, however, ensure that by the IBA should, howev
will still get the same deal.

One region of special interest to the
observers is the area known as Alpha, which was first noted many years ago because of its
very high reflectivity for radar waves. Alpha is circular and has a diameter of $1,120 \mathrm{~km}$. It contains a very large number of roughly
parallel ridges about 19 km apart and some of hese can be traced for distances of hundreds
of kilometres. The Alpha region does not appear to have a counterpart on earth even
though it bears some resemblance to the

Guidance system and laser stick aids for the blind
Two new aids for the visually handicapped are being introduced in Sweden, according to
a publication by the Swedish Board for Technical Development (STU). The first is an electronic guidance system, thought to be
the first of its kind in the world, which has recently been taken into service at a shopping centre near Gothenburg. This system consists of a portable receiver and a live
underground cable that runs under a predeunderground cable that runs under a prede-
termined route through the shopping centre.
The The receiver produces a disprete tentring
sound as long as the user keeps to the route, sound as long as the user keeps to the route,
but emits another signal if he or she deviates to the left or to the right. It is hoped that, eventually, the system will be modified so
that it can inform the blind user where he or she is at given intervals.
The guidance system is based on a design
used in a wire navigation system launched by AB Nivakontroll a member of the Electro are
Group. In this system signals which are emitted by submerged electromagnetic
cables are received by ships who use them to navigate in and out of port in poor visisility.
Plans are also under way to produce at least 1000 laser walking-sticks for the blind, but this depends upon the necessary financial
support coming from the Swedish support coming from the Swedish Author.
ities. The sticks emit an invisible laser beam which is bounced back if any solid object lies within two-metres of the user's path. If this
happens, the stick, which was developed by the National Defence Research Institute (FOA), produces a sonic signal as a warning.
...and now the electronic phrase book
The latest consumer offering based on the ubiquitious microprocesser is a pocket
language translator. Two similar but indelanguage translator. Two similar but inde-
pendent products have recently been an-
nounced in the UK following their launches in the USA about six months ago.
The LK 3000 from Lico The LK 3000 from Lexicon uses a Mostek
3870 processer and comprises a hand-held 3870 processer and comprises a hend-held keyboard, 16 character alphanumeric i.e.d.
display and m.o.s. controller. The unit
accepts a range of modules each accepts a range of modules each of which
accommodates a 3870 and a 64 K r.a.m. for a accommodates a 3870 and a 64 K r.a.m. for a
programme store of around 2,200 words and phrases in, for example, English and French. Lexicon's marketing vice president Chris-
topher Washburn was optimistic when topher Washburn was optimistic when
stating that new modules storing around 7,500 words and phrases in a 128 K r.a.m.
would be available in September. Each nodule has an internal rechargeable battery
which keeps the volatie memory powered Which keeps the volatile memory powered
for a year. As well as a selection of language
modules there is a calculator version modules there is a calculator version which
also offers metric and currency conversion. also offers metric and currency conversion.
The Chery translator is also based on the
Mostek 3870 but unlike the LK 3000, it has Mose processor and 2 K of r.o.m. in the main
keyboard. With this system a calculator and metric conversion programme are part of the main unit. By plugging in up to three memory capsules, each containing 32 bytes of r.a.m.
and 32 K of r.o.m., the translator can operate with three languages at once and offers total store of 7000 words and phrases.
Lexicon and Cherry say that
Lexicon and Cherry say that their respec-
tive units will be supported with new memory modules ranging from games and calorie counters to user - programmable
types which can accept data such as telephone numbers via the keyboard. This,
the say the makers, means that the translator
will not become obsolete within a few months as did many of the early electronic
calculators and wristwatches.
Denmark produces cheap microcomputer for schools Borg Christensen of Tonder College of
Education in Denmark has designed a microcomputer which, priced at about $£ 1000$
can be offered as a cheap replacement for the computers which about half of the Danish
schools now use. The computer's softere schools now use. The computer's software
enables it to run a language called COMAL and to link with ICL machines. The new Danish system, which has been
given the name COMET, is similar to the given the name COMET, is similar to the
Research Machines 380 Z microcomputer which many British schools, use, but it has a much faster cassette backing store and, as
yet does not have television graphics. yet, does not have television graphics.
According to a report in the Daily Teleg-
raph (May 15) orders for 300 machines have raph (May 15) orders for 300 machines have
already been placed and at least two UK educationalists are showing interest in the
COMAL language. Roy Atherton, who is the head of the Computer Education Resources Centre at Bulmershe College, Reading, has with Mr Christensen and ICL staff there. The other educationalist is Dr Max Bramer, lec-
turer in computing at the Open University, turer in computing it the Open University,
who in interested in COMAL because it is
similar to similar to part of the University's new computer language.
A seminar on
on computer languages for
be arranged this summer in schools may we arringed
Reaing with Mr Christensen as the principal
speaker.

Set makers gloomy about teletext

Despite the fact that teletext has now been n the air in Britain for nearly five years (the f television sets fitted with teletext decoders of television sets fitted with teletext decoders BREMA, the set makers' trade association were unable to give Wireless World an exact
figure for the total number of teletext sets figure for the total number of teletext sets
sold in this five-year period but they estimate hat total deliveries to dealers have been no more than 15,000 to 20,000 . (For comparison,
UK deliveries of colour television sets in the UK deliveries of colour television sets in the
year 1978 alone were $1,736,000$). BREMA is obviously worried about this lack of public Iterest. In its annual report for 1978 it says
If teletext is not to stagnate, wither and die, a realistic pricing policy, coupled with Government support and further major promotions will be needed in 1979."
At another point the report remarks that the teletext market for 1978 "was sluggish

Ministerial responsibilities

 within the D. of I. allocatedOn May 9 Sir Keith Joseph, Secretary of State
for In Industry, allocated ministerial responsibilities within the Department of Industry. The Minister of State, Lord Trenchard
will be primarily responsible for the priva sector and regional policy. He will also b hedepartment's spokesman in the House
Lords. The Minister of State, Mr Adam Butler, will be responsible for aerospace shipbuilding and shiprepairing, the Post Office, steel (including the private sector) Board and its subsidiaries, and research an The Parliamentary Under-Secretary of
State, Mr David Mitchell, will assist Lord Scate, Mr David Mitchell, will assist Lor
Trenchard. The Secretary of State, who will
have responsibility for small firms have responsibility for small firms, will also
be assisted by Mr Mitchell. The Parliamen ary Under-Secretary of State, Mr Michae
th sales in the first three-quarters of the year amounting to a mere 2,000 sets .. However, although deliveries in the las response was disappointing". It appears that he bulk of the teletext receiver deliveries ve in fact been made 1978. In intro gening the report at this year's annual ord Thorneycroft, said that, although there were many exciting things happening in ectronics development, in Britain at any the public could be induced to accept them in the form of new consumer electronic pro
ducts. In the USA, on the other hand there was such a vast market for consumer products that new electronic devices for them
could be made and sold in sufficiently large nuld be made and sold in sufficiently large public.

Bubble memory business computer An American Company, Findex Inc., has
introduced a general-purpose microcom puter which uses a bubble memory for it it anguage and has a upper- and lower-case phanumeric plasma display, and an integra printer, yet fits into a co
weighing less than 200 b .
In the bubble memory, which has 128 K bytes of memory that can be expanded in tored in a stationary, magnetic garnet chip the form of uniformly-spaced magnetic domains. These are arranged in closed loops,
where the presence of a bubble represents a where the presence of a bubbie represents a
binary "one" and the absence of a bubble epresents a binary "zero." Induced magnetic ields cause the bubble loops to rotate
within the chip so that information may be within the chip so that information may be
recorded by an inbuilt generator, or read by
an integral detector.

Spot-frequency distortion meter

Measures very low ($0.00001 \%^{*}$) levels of harmonic distortion.
by J. L. Linsley Hood

This article describes a spot frequency distortion measuruing instrument whic
uses a bootstrapped notch fiter uses a bootstrapped notch filter
technique to avoid typical parallel technique to avoid typical parallel T
problems of 2 nd and 3rd harmonic attenuation. Oscillator amplitude stabilization is achieved by a Darlington-based Wheatstone bridge arrangement with a thermistor
controlling currents in each limb. controling currents in each limb. The
final combination of oscillator, notch filter and wide bandwidth millivoltmeter offers marked improvements in noise factor and linearity, permitting the resolution of than is normally possible.

THERE IS NOW considerable interest among engineers in the use of distortion measuring systems as a general tool for can most conveniently be done by the use of a spectrum analyser, giving rapid identification of the nature of the harmonic impurities, with equipment of this type the lower level of detectable
distortion is usually about -80 dB or distortion is usually about - 80 dB or
0.01%, while the areas of current interest are 10 to 100 times less than this. For these applications therefore, the somewhat laborious methods of notch filtering for a single measuring
frequency are still required. frequency are still required. circuits, to measure waveform impur-

ities below $0.0001 \%(-120 \mathrm{~dB})$ and to generate sinewaves with impurity contents of about 0.0002%, the methods employed here may be of interest to
those engaged in circuit analysis, as a means of attaining a more detailed view of non-linearity. In order to reduce the complexity of construction, the equipment was designed to operate at five 'spot' frequencies within the audio band
$-100 \mathrm{~Hz}, 300 \mathrm{~Hz}, 1 \mathrm{kHz}, 3 \mathrm{kHz}$ and 10 kHz .

Measuring apparatus

The most straightforward way of deter mining the amount of distortion presen
in a pure sinusoidal waveform is to interpose a sharply tuned notch-filter
*For 10V r.m.s. input signal.

between the input waveform and a measuring circuit and while there are several suitable filters, the most con-
venient of these is the 'parallel T' venient of these is the 'parallel T' net-
work, shown in a schematic measuring work, shown in a schematic measuring and impedance characteristics of a simple T network are shown in Fig. 2 which demonstrates the difficulty in-'
herent in the use of a passive 'parallel T ' herent in the use of a passive 'parallel T '
of this type in the signal path. There would be significant attenuation of both the second and third harmonics of the incoming signal, leading to an inaccurate measurement of the level of distor-
tion. tion.
The sharpness of this notch can be negative feedta application of overall negative feedback around a loop con-
taining the 'parallel T ' and a suitable

Fig 1: Conventional parallel T distortion arrangement and the basic T circuit
following amplifier so that for the same
attenuation at the notch frequency the transmission at $f, 2$ or $2 f$ can be made substantially identical to that at much lower or much higher frequencies and this is an arrangement which has been employed in commercial 'parallel T' distortion meters ${ }^{1}$. Unfortunately this
method suffers from the disadvantages that the input circuit is made more complex and that there is some injection of amplifier noise into the notch filter, lessening the sensitivity of the system.
An alternative approach, which leads to simpler circuit configurations, is to
apply positive feedback to the 'common' limb of the T, by means of a 'bootstrap' arrangement of the type shown in Fig. 3. This leaves the input to the T free from other circuit connections, so that it may be taken directly to a low impedance
input attenuator. The sharpness of the notch can be controlled by the extent to which the 'bootstrap' voltage approaches that of the input voltage to the amplifier. In general, too sharp a notch will make the equipment less easy
to operate, so the proportion of the input voltage applied to the 'bootstrap' connection is chosen so as to achieve a generally flat response in respect of econd and higher harmonics.
The characteristics of the notch filter, with regard to both the notch
frequency and its equivalent output

Fig 3: Bootstrapping the network
and 'noise' impedances, are influenced by the impedance seen at the input to therefore be of the constant impedance type. Suitable values for this can readily be calculated ${ }^{2}$. Ideally, the parallel T should be fed from an impedance which not more than onete

Fig 4: Distortion meter circuit.
Instructions for making up odd value resistors ($R_{1}-R_{10}$ etc.) mean "use" $6 k 8$ and 100 k in parallel
following amplifier should have at least 10 times its input impedance over the requency range of interest

Bootstrapped T circuit

A suitable electronic circuit, which mploys a bootstrapped T as the notch element, and largely satisfies the circuit requirements is shown in Fig. 4. In this,
the T network is fed from an input attenuator having a voltage attenuation of $\sqrt{10}$. (3.162) or 10 dB , and a characteristic impedance of $3.3 \mathrm{k} \Omega$. The output of the T is taken to a low-noise about $300 \mathrm{k} \Omega$, and a gain of 150 . The effective input noise is mainly determined by the impedance characteristics 'of the T .
A wide-bandwidth ac millivoltme

64
is driven from this amplifier through a
wo position ($x 1$ and $x 1 / 10$) attenuator two position ($x 1$ and $x 1 / 10$) attenuator
and an optional $250 \mathrm{~Hz},-20 \mathrm{~dB} /$ octave, 'bootstrap' filter ${ }^{3}$, with a high-pass cha-
racteristic. The use of an RCA CA3140 c.m.o.s. operational amplifier allows an effective 100 kHz bandwidth, $\pm 1 \mathrm{~dB}$, for the meter circuit. The full-scale sensitivity of the meter circuit is adjustable by the 'set f.s.d.' control over the range
$8.2-30 \mathrm{mV}$. The complete instrument can be operated from a 9 volt transistor radio battery and the current consumption is approximately 15 mA .
Tuning of the notch to the nominal
'spot' frequencies is by means of a 10 k twin-gang and 5 k single-gang potentiometer. Fine tuning is then accomplished by two 1 k and one 500 S ten-turn potentiometers.
The ultimate sensitivity of the instru-i ment, assuming an adequately low
noise component in the input signal under test, is less than 0.0001% for a 1 volt (r.m.s.) input signal, or less than 0.00001% for a 10 volt (r.m.s.) input signal. At these harmonic distortion from mains-frequency hum - which can be obtained with care in the screening of the instruments and the layout of connecting leads - the effections is extremely important and goldplated connectors should be used if available.

Operating the instrument The method of operation of the innput attenuator is used in two roles that of adjusting the input magnitude of the signal fed to the instrument, and
that of adjusting the f.s.d. harmonic distortion reading. The technique is as follows - assuming an appropriate sinusoidal signal is applied to the input of the instrument, the sensitivity is progressively increased by moving the
slider of the input attenuator switch $\left(\mathrm{S}_{1}\right)$ upwards from the lowest sensitivity (30 V r.m.s.) position until a suitable setting is found, at which a full scale eflection can be obtained on the output meter, with $\mathrm{S}_{\text {A }}$
${ }^{1} S_{S}$ is then switched to the 'measure' position, and S_{1} is moved upwards towards the maximum sensitivity setting, with each upward step correspon-
ding to a 10 dB increase in the meter display sensitivity. In percentage terms, this gives a step sequence of 100%, $31.6 \%, 10 \%, 3.16 \%, 1 \%$, and so on. If an input voltage of 1 volt (r.m.s.) is applied, the maximum sensitivity position will
correspond to a f.s.d. value of 0.01%. Since the input noise of the instrument, integrated over the 100 kHz measuring bandwidth, gives a meter deflection of less than 1% of the full scale, a reading components of the input signal (0.001%) can be seen on a suitable meter. If a 3 volt input signal is available, the maxi-
mum f.s.d. input sensitivity setting
would be equivalent to 0.00316% and if a 10 volt signal were available, a full scale deflection equivalent to 0.001% detection levels of 0.00003% and 0.00001% respectively.
These assumptions have been checked in practice using an oscillator whose t.h.d. at 1 volt (r.m.s.) output was
measured at 0.0002% and when memplified to the 10 volt level through the best available amplifier gave a reading of 0.00018% on the 0.001% f.s.d. setting. Once again, at these levels, the
fitting of the plug and socket connections is critical and the notching-out of the fundamental is a matter of some skill.
Although the component values for the notch filter of Fig. 4 are those about the mean centre frequencies, it is obviously practicable to extend this so that the ranges overlap.
The 'scope output point can be used for a visual or instrument analysis of and provided that the fundamental has been removed more simple techniques are often adequate such as a phase sensitive rectifier operated from an exthrough a p plllator, frequency-locked the input frequency.
For simplicity, an average-reading millivoltmeter has been employed as the output meter rather than a more com-;
plex 'true r.m.s.' (thermal energy equiplex 'true r.m.s.' (thermal energy equi A minor practical snag in the use of
this instrument with the simple con this instrument with the simple constant impedance input attenuator shown is that the capacitive coupling of across the attenuator switch leads to a small change in the notch frequency as the input attenuation level is changed, with the consequent need for some readjustment of the null frequency

A low-distortion spot frequency

oscillato

A similar, but rather more complicated 'parallel T' distortion meter was built some ten years ago and used as a tes oscillator performance charactent of - a number of experimental oscillato circuits were examined by this means ways exercise was instructive in many the of which the two most vital were low noise level (which precludes the use of most integrated circuits) and the need for very high frequency stability, if a fundamental-nulling measuring tech a ique is to be used.
The attainment of
The attainment of a stable operating frequency demands a highly frequencyselective feedback network and of the
many forms available the 'parallel T' offers the best ratio of performance to complexity. If this type of network is

Fig 5: A high gain null circuit.

WRELESS WORLD. JULY 1979 discourages the consideration of this
alternative where a wide bandwidth is alternative
necessary.
Initial exploration of the first of these two possibilities showed that it was
possible to obtain stage gains in the range 50,000 to 100,000 from a single transistor in a Liniac ${ }^{5}$ configuration if the amplifying device was isolated from
its load by an f.e.t. in the manner shown its load by an f.e.t. in the manner shown in Fig. 6. However, the need to couple the amp an inying stage to an output point required an impedance transformation circuit which added considerably to the component count and de the concept. If a two-stage design is chosen, it is essential that the gain of the first stage is sufficient to ensure that the noise contribution of the second can be ignored. In general this implies that a
relatively high first stage load is necessary, which in turn indicates the choice of either a field-effect device as the second stage amplifier, or a compound configuration of junction tran
sistors. signal Darlington devices meets this requirement admirably and has an in put impedance which is sufficiently high to have little effect on the impedceding stage. Also, the stage gain of such a device feeding a constant current source has been shown to be of the order of $2000-3000^{6}$.
Taylor shows ${ }^{\text {7 }}$ that the use of an input long-tailed pair, because it is basically a
push-pull configuration, leads to the cancellation of even-order harmonic distortions, particularly when the devices are matched in characteristics and operating conditions, but also even
when the devices are mismatched. A possible gain stage of this type, using an input long-tailed pair and a Darlington transistor second stage is shown in Fig 7. This has a low-frequency open-loop gain of the order of 200,000 or geater,
which allows a substantial measure of loop feedback to be applied and avoids loop feedback to be applied and avoias that low levels of negative feedback may exchange a small measure of non-
linearity for a whole host of high-order distortions.

Output amplitude stabilisation

The stabilisation of the amplitude of a problem, for reasons explained previously ${ }^{9}$ and this difficulty is exacerb ated by any requirement that the amplitude stabilisation circuit should contribute as little as possible to the the technique adopted is that shown in Fig. 8. This takes advantage of the fact that in a Darlington transistor, the collector and emitter currents are sub thermistor to be operated as one limb of a Wheatstone bridge type configura

tion. Since the ratio of the collector to emitter limbs is $1: 2.7$ the bridge will be, balanced (for zero output at point ' X ') nal resistance value, due to the heating effect of the circulating current, of $2.7 \mathrm{k} \Omega$. If the applied voltage to the control circuit falls, the thermistor will cool somewhat, which will cause the phase thereby increasing the magnitude of the output. If the magnitude of the signal input to the control circuit increases, then the resistance of thethermistorwill fall and the phase of the feedback signal
will become negative, causing the output of the oscillator to decrease. In operation, the total magnitude of
the signal present at the base of Tr_{2} is very small, so that the non-linearity ontribution due to the curvature o vices is also very small. This demon strates one of the reasons for the super iority in performance of this (parallel T) type of circuit over the conventiona Wien bridge system, in which there is
normally one-third of the output signal present at the base of the input transis tor with consequently greater con tributions from the input device to the overall non-linearity of the circuit. The final circuit of the oscillator is
hown in Fig. 9 and the measured distortion characteristics are shown in Fig. 10. Loop stabilisation is achieved by

signal on an oscilloscope. Even so, the operation of any notch filter with a certain delicacy of touch and conditions of reasonable tranquillity

Printed circuit boards

Two glass fibre p.c.bs are available for th the set from M.R. Sagin, 23, Keyes Rd.
ther London, N.W.2.
adding a dominant lag capacitor bet ween collector and base of Tr_{4}. The values shown have proved adequate to
 al models of this oscillator, but in two of the three cases a 3 pF capacitor was mprovement in the h.f. open-loop gain and rather lower t.h.d. figures at 10 kHz han those shown in Fig. 10.
While the author's own model of this unit operates only at the five spot ing the capacitors in the T (polystyrene foil types) there is no reason other than omplexity of switching for the restric tion of its operating frequencies to those
hown
using resin dipped carbon film resistors
and this is still in service. A subsequent unit employing metal film resistors roughout showed a small improve ment both in t.h.d. and background noise level. Unfortunately for the conclusiveness of this experiment, a simila improvement in the prototype wa 2N5089 input devices with Motorol BC109Cs. The f.e.ts are also preferably Motorola types.
Thermist R54 or equivalent should be an STC $20^{\circ} \mathrm{C}$ should be approximately 50 k falling to about 270Ω in operation. This makes other items such as the GM473 or VA3410 suitable. The measurement of the residual facilitated by the monitoring of the

References

1. Radford type $A .71$ distortion measuring
2. Linsley Hood, J.L., Low distortion oscilla2. Lor, Wirereless World, September 1977, p.42.
3. Linsley Hood J.L The "H" "r "boons 3. Linsley Hood, J.L., The "H" or "bootstrap"
1.f circuit filter, Electronic Engineering, July 1.f. circuit filter, Electronic Engineering, July
1976, pp. $55-58$. 4. Bailey, A.R., Low-distortion sine-wave generator, Electronic Technology, February
1960, pp. 64.67 . 5. Linsley Hood, J.L., The Liniac, Wireless W. Id, September 1971, pp.437-441.
4.
5. Idem. p.439.
6. Taylor, E.F., Distortion in low-noise amplifiers, Wireless World, August 1977 . pp. 28 -32.
7. Baxandall, P.J. Audio power amplifier $\underset{\text { des.ign, }}{\text { de.56. }}$.
8. Linsle
. Linsley Hood, J.L., Low distortion osc
tor, Wireless World, October 1977, p. 70

Charge-coupled memories

for high-resolution picture insets

Monitoring a second channel inserted into the main picture
by P. Bouvyn BARCO COBAR Electronics, n.v., Kuurne, Belgium

Charge-coupled device memories have been developed for use in a "picture-in-picture" system, for viewing and monitoring a second channel on
small image, inserted in the main tv picture. The system employs two standard receiver sections tuned to the main viewing channel and the channel for the inset picture. Two 72×128 c.c.d. memories store the out-of-phase second
channel video information and write it out, synchronized with the main programme, enabling a stable inset location in the upper left hand corner. By choosing the lines to be stored very

SINCE 1973 , several makers have offered second-channel monitoring on consumer television sets. Nordmende was first, marketing a set with two picture tubes which allowed two programmes to be viewed at the same time,
one on the main 60 cm screen and another on an adjacent 20 cm screen. A button allowed switching between the two screens.
Several years later, in 1977, Saba and Telefunken developed their system,
making it possible to display a partial making it possible to display a partial
black-and-white picture of a different programme in the corner of the main colour picture. The inset measures $16 \times$ 18 cm on a 66 cm tube. The system uses

Fig. 1. Typical inset picture from the BARCO system on a 66 cm screen.
a video-switch controlled by logic circuitry, which chooses the corner of inset according to the phase shift of the two transmitters, so that horizontal and vertical blanking bands do not show. The black and white inset has the

displays part of a picture quadrant. The Saba system had not been on the
market very long when Grundig appeared with their "Vollbild im Bild", developed by ITT. This system delivers a stable second picture located in the middle of the lower edge of the screen. The inset, measuring $8 \times 11.5 \mathrm{~cm}$, con-
sists of a full black-and-white picture of 116 lines (58 per field) with 64 picture elements per line. The system uses two bucket-brigade memories for storing the reduced size picture, synchronized
with the second-channel video signal, and to read out the stored video information synchronized with the main picture signal. Only one line in four is stored, while the bandwidth of the second programme video signaing
reduced to 0.75 MHz . Sharp is also going to use this system, according to recent information.
Separately BARCO
have developed Separately BARCO have developed their own system, using two c.c.d.
(charge-coupled device) memories. The inset picture is located in the upper, left-hand corner of the main colour picture. The linear dimensions of the picture.

C.d. memory

Signals originating from two different
transmitters are normally out of phase,

Fig. 2. Organization of the 72×128 c.c.d. memory.

Fig. 5. Eliminating one eighth of the picture at each edge loses a negligible
amount of information amount of information

Fig. 3. Reading and writing of both memories. Main picture is A series; inset is B. C.c.d.2, for example, reads from first
field of B, writes in second field of A, reads in first field of B, etc.

Fig. 4. Phase variations sometimes mean that a memory would need to read and write simultaneously

Fig. 6. Result of reading only three quarters of picture: problem of Fig. 4 avoided.
ture in picture" application the s.p.s. structure is more suitable than the serial ype because the maximum bandwidth is determined by the number of shifts the information has to make from cell to
cell. For a 100×100 s.p.s. structure there are 200 shifts, while for a serial structure with the same number of cells there are 10,000 shifts.
Memory format. The reproduction of a picture with a cathode ray tube can be taken as a mixed version of point per point reproduction. In the vertical sense the display is discrete (expressed as a number of lines), while in the horizontal by the bandwidth of the transmitted a.m. signal). A tv standard is composed in such a way that horizontal and vertical resolution are the same. The BG standard, for example, has a bandwidth
of 5 MHz , where the picture consists of 575 effective lines.
Considering the chosen s.p.s. organization of the c.c.d. memory, the number of elements has to be defined as
a product of lines (L) and columns (C). a product of lines (L) and columns (C). ture in the BG standard, not only the transmitted bandwidth and the effective information time per line in the horizontal sense must be considered but
also the effective number of lines in the vertical sense. So calculation give $\mathrm{L}=575$ and $\mathrm{C}=525$.
Because the inserted picture is four times smaller, proportionally less lines
and columns are needed. The memory and columns are needed. The memor
capacity can be reduced to $(575 / 4) \mathrm{L} \times$ $(525 / 4) \mathrm{C}$ or $144 \mathrm{~L} \times 128 \mathrm{C}$, in con venient numbers of bits. However, a transmitted picture in the BG standar is composed of two interlaced fields, so the memory can be split into two memory then stores one field of the picture.

BARCO system

Essentially the systent works as follows. Two c.c.d. memories read in alternately
one field (every fourth line) of the second channel picture after which c.c.d. 1 writes out the information into field 1 of the main picture and c.c.d. 2
into field 2 as in into field 2 as in Fig. 3. The field which
is read into the c.c.ds is always the firs complete field of the second channel picture. As the phase of both transmitter signals varies in time, the situation shown in Fig. 4 can occur. Neither c.c.d. out into every field of the main channel, since each time there is an overlap of read and write time. Some fields would, result. By shortening the read-in time to
$3 / 4$ of the normal time the problem shown in Fig. 4 is solved, as indicated by Fig. 6.
Fig. 6 .
In writing out the information line by line, the height of the picture is reduced is stored. The height of the inset becomes $3 / 4$ divided by 3 or $1 / 4$ of the normal picture height. In the same way only $3 / 4$ of a line is read into the memory, so to obtain the resolution of 5 input memory signal may be reduced to $5 / 3=1.66 \mathrm{MHz}$, because the writingout is three times faster. The read-in and write-out clock frequencies, which
must be double the bandwidth, are then must be double the bandwidth, are then
respectively 3.33 MHz and 10 MHz . This means that in the horizontal sense as well the picture is compressed by $1 / 3$. The width of the inset therefore be comes $1 / 4$ of the normal picture width.

Interlacing of inset. It might be assumed that c.c.d. 1 always reads in the second field of channel 2 and c.c.d. 2 field 1 , but this is not the case. There are two critical situations, according to the phase the upper diagram of Fig. 7 the field frequency of the second transmitter is

Fig. 7. If raster frequencies of two pictures differ, one field of inset is
either displayed twice or not at all.

lower than the field frequency of the migher．Consequently，the lower half either displayed twice or not displayed at all．At this moment the next complete field to be read in changes from the first to the second memory，or vice versa． To obtain an interlaced inset，it is necessary to choose very carefully the
lines to be stored in the memories．Dif－ ferent systems can be used but the best results are obtained with a system where the writing out of the memories is coupled to the field－information of the main transmitter．The first memory－ field of the main transmitter，beginning with line $1+m$（ m is the vertical posi－ tion of the inset）and ending with line 72 $+m$ ．The second memory－c．c．d． $2-$ of the main transmitter，beginning with line $313+m$（this is the line under line 1 $+m$ of the first field）and ending with line $385+m$ ．After a memory has writ－ ten out，the next complete field of the
second transmitter is read into that memory．
If this field is the first field，then reading in is started with line $4+n(n$ defines the line on which we start） without considering for which c．c．d．the
information is destined．If the field is the second field，then the line that is read in depends on which c．c．d．the information is destined for．
If the second field is read into c．c．d． 1 ， then we start with line $315+n$ ．This line is later on written out above the infor－ mation of c．c．．d．2，so that an interlaced inset is obtained．If the second field is read into c．c．．d．2，then we begin with
line $318+n$ ．This line is situated under line $4+n$ ，and is later on written out under the information of c．c．d．1．Also in this case we obtain an interlaced inset， as in Fig．8．The diagram shows that the exactly in between the read in lines of field 1 ，thus giving optimal resolution． This cannot be obtained with a system that reads 1 line in 4
In practice，the writing out of c．c．d． 1
starts with starts with line 26 of the first field of the
main transmitter．The writing out of main transmitter．The writing out of
c．c．d． 2 starts with line 339 of the second field．The first field of the inset trans－ mitter is read in，beginning with line 56 and the second field begins with line 367

C．c．d．matrix．The control circuitry in Fig． 9 generates 13 clockpulses to allow the 72×128 c．c．d．memory to operate． The status output（EOF）indicates when written out．Another etely read in or the mixing of the output signal of the c．c．d．with the video signal of the main programme．Horizontal and vertical synchronization inputs are provided for control－input，（MC）that switches the memory from read to write．In the posi－ tion＂read in＂the memory starts
reading in after the reception of the Seventy－two lines are read in and shifted down into the parallel register， pulse（HI）．After all 72 lines are read in， the control logic waits for the write out command．Now writing out happens in a similar way as reading in．Horizontal
（HO）and vertical（VO）write－out start pulses now synchronize the whole sequence．First，the information is shifted out of the parallel register into the output register，which is then writ－ ten out．When all 72 lines are written
out，the control circuitry waits for a new read in command．
Inset control．Both memories of the picture－inset generator each have an identical c．c．d．control，controlled in a way the picture－inset control in such with pulses of the inset synchronized while writing out is synchronized with pulses of the main programme trans－ mitter A．The circuitry ensures an in－

Books Received

The New Penguin Dictionary of Electronic is compiled by Carol Young，and replaces the word＇electronics＇in the title is not an indi－ cation of bias towards devices and materials； he book embraces all celds of electronic compering，Incluading communications and
include every term ously hardly possible to include every term in current use and，in－ deed，there are one or two surprising omis－
sions，such as accelerometer，secondary radar，totemm－pole outputa and the Nyquist
criterion．It is also odd to find the criterion．It is also odd to find the spelling
Schockley，and to see no reference to Schockley，and to see no reference to
Mossbauer，Cerenkov or Czochralski．But these are somewhat pettifogging criticisms nd the book is a fine work of reference
which is well up to date with such words Prestel．Cross－referencing eases problems with such entries as Chebishev and Tche－ byshev．This 618 －page book costs $£ 1.25$ ，or
$£ 7.97$ in hardback，and is published by Penguin Books Ltd， 17 Grosvenor Gardens， Condon SW1W OBD

Operational Amplifiers，by G．B．Clayton，is how largely rewritten to take account of the many new types of amplifier which have been introduced in the intervening period．
This is not simply a collection of circuits using op－amps，，ut is an attempt to provide
the reader with sufficient eneral informa－ the reader with sufficient general informa－ tion on the characteristics of devices and
circuit contigurations to enable him to design circuits and systems from scratch．A chapter on fundamentals precedes＇two sections on performance characteristics and testing
which inform the rest of the chapters on applications．A final chapter provides infor mation on practical points，such as stability，
interference avoidance，etc．Exercises interference avoidance，etc．Exercises are
given at the end of each chapter，with answers，and the appendices consist of a number of applications and further calcula－ tions on common－mode rejection and
frequency／phase response．The book is
erlaced inset．Continuity of the inset is not affected by the two transmitters being out of phase（no half picture or flicker with a change in the phase dif－
ference）．Therefore，vertical（VA and VB）and horizontal（HA and HB）sync． pulses are needed and also field infor－ mation（RA and RB）from both trans－ mitters．
The research for this project，com－
missioned by BARCO－COBAR tronic n．v．，has been carried out partly by the ESAT，division of the Elec－ trotechnic Department of the university of Louvain（Director：Prof．Dr．Ir．R．Van Overstraeten）unde
Dr．Ir．G．Declerck．
Dr．Ir．G．Declerck
Many thanks especially to P． Schreurs，K．Vandamme and V．Jan
soone for the very interesting discus soone for the very interesting discus－
sions on the subject．We would also like to thank the IWONL（Institute for en couragement of scientific research in （ndustry and Agriculture）and the CRIF
（Centre for research in metal－industry） for their help．
for their help．
published by Butterworth and Co
（Publishers）Ltd， 88 Kingsway，London （Publishers）Ltd， 88 Kingsway，London
WCC2B CAB，contains 410 pages and costs ${ }_{\text {£9．50 in hardback．}}$

Radio Amateur＇s Examination Manual，by G L．Benbow（933HB）is designed to provide technical，at the level needed to enabl readers to pass the R．A．E．The new syllabu and revised multiple－choice format of the examination papers have caused a complete
revision of the book，which is the eighth in he series．Two sample examination papers with answers，are included．The 120 page，
paper－back book is published by paper－back book is published by the Radio
Society of Great Britain， 35 Doughty Street， Society of Great Britain， 35 Doughty
London WCIN 2AE at $£ 2.16$ by post．

Literature Received

Brochure on the SE Labs（EMI）model SE6300 12in，ultraviolet oscillograph is avail－
able from their Instrumentation Division，
Spur Road，Feltham，Middlesex TW14 OTD Equipment for the prototype and small－scale
production of printed－circuit boards is illust－
rated in a brochure from the Cupro Products rated in a brochure from the Cupro Products
Divison of Lektrokit Ltd Sutton Industrial Park，London Road，Earley，Reading，Berks
RG6 1 AZ
WW 420

A catalogue describing a range of small computers，valves and television picture
tubes can be obtained from Solus（Elec－ tubes can be obtained from Solus（Elec－
tronics）Ltd，Kirkwood Road，Cambridge
CB4 2PF
WW 421

Teletext remote control Figure 2 of this article，which appeared in the
April 1979 issue，contained an error，for April 1979 issue，contained an error，for
which we apologize．A $1 \mathrm{M} \Omega$ register， R_{5} ，
should be connected R_{4} and C_{5} and pin 5 of IC_{3}

Super－regeneration－

only a toy？

The very simple＂super－regenerative＂ high－gain detector，invented over 55
years ago by Howard Armstrong fo years ago by Howard Armstrong for
medium－wave broadcast reception but rapidly superseded for that purpose by
his development of a practical superhet， his development of a practical superhet，
has always been a technique of tantal－ has always been a technique of tantal－
ising promise but only limited practical application．Admittedly，it helped amateurs pioneer the old 56 and 112 MHz bands in the 1930 s and was widely used in wartime for such pur－
poses as tank sets and Bert Lane＇s 450 MHz S－phone spy radio；but for many years it has virtually faded from sight except as a beginner＇s toy and for radio－control receivers．Critics point to the inherent poor selectivity，excessive an r．f．stage or by a simple diode tech an r．f．stage or by a simple diole tech－ Laboratories a decade ago）and the extremely high inter－station noise Again，although suitable for both a．m． problems for n．b．f．m．，s．s．b．and c．w．
But very much to its credit are high sensitivity（typically around 0.5 micro－ volts），extremely low－cost，inherent against impulse interference
One of the few recent surveys of the potential of the super－regenerative de－ tector appears in the New Zealand Nat Bradley ZI 3 VN ．He has carried out many experiments using field－effect transistors in both self－quenched and separately－quenched arrangements，in－ cluding the use of squelch gates to tame use of the＇super－regen＇for n．b．f． m ． reception（by injecting a stable carrier at signal frequency）and for c．w．（by using the squelch gate to key an audio oscillator）．His conclusion is that＂the super－regenerative receiver is a fascin－
ating and unnecessarily maligned de－ vice．Modern techniques can give added performance and versatility at low cost its use（up to about 1000 MHz ）could well be re－examined with an eye

Improving the UA3IAR

＂quad＂

ttention was drawn in the December 978 WOAR to a novel form of switched quad－type aerial developed by the Rus－ sian amateur L．Vsevolzhskii，UA3 IAR This uses an octahedral wire structure supported by a single pole and requiring rotation，yet capable of being switched rotation，yet capable of being switched
to direct the beam towards any quad－ rant．But it was pointed out that the system is unlikely to have a forwar gain exceeding about（referenc dipole）． Aen experimenting withateurs have

with a view to increasing gain and bandwidth，reducing sidelobes and pro－ viding operation on more than one from the current maxima being at the pinched－in vertices of the array．One technique which has already been shown largely to overcome this problem （though making quadrant switching posed and tested by Leslie Moxon G6XN．This consists of re－arranging the feed points so that the array is vertically rather than horizontally polarised．This increases the spacing between the cur－
rent maxima，while it also automatically decreases this spacing when the aerial is excited at higher frequencies．A mul－ tiband version has a gain of the order of $7-8 \mathrm{~dB}$ on 28 MHz and approaching nor （about 6dB gain）on 14MHz Further options remain to be tested，but the work seems to confirm that such modified octahedral structures may turn out to provide highly effective wire beam arrays at low cost，relatively
simply．

Scanning the bands

A recent issue of CQ－TV（journal of the British Amateur Television Club） slow scan amateur television in Yugos－ a 1.2 kW linear amplifier（built for 432 MHz ＇moonbounce＇）with a 128 ． element colinear aerial．
An amateur tv repeater（ 432 MHz ＇in－ band＇）is being set up on Mount Belmont
$(450 \mathrm{~m}$ a．s．1．）near Wellington，New Zea－ land following tests at a temporary location．It works to 625 －line PAL（Sys－ tem B）standards with output frequen cies 17.5 MHz above input frequencies． It operates only on broadband tv typ
signals，both vision and sound WB6NMT，California has become the first amateur station to make＇moon bounce＇（earth－moon－earth）contacts on four bands： $50,144,220$ and 432 MHz Chris Bartram，G4DGU，has heard
meteor－scatter＇pings＇on the 432 MHz band and is endeavouring to obtain band and is endeavouring to obtain
contact with Sweden using this mode：
only two 432 MHz meteor－scatter con－ tacts have ever been completed by ween Swedish stations SK6AB and ween Swedish stations SK6AB and and W2AZL in 1972
Contacts between New Zealand and Australia were made during January on
144 MHz and also for the first time on 144 MHz and also，for the first time，on
432 MHz ．The 432 MHz s．s．b．contact between ZL1TAB，Auckland and VK2BQJ，Oyster Bay，near Sydney，was over a distance of almost 2150 km ．$£ 900$ Fines and costs totalling over $£ 900$ Court under charges arising from de－ liberate interference to the London 144 MHz repeater at Crystal Palace by two men operating from a vehicle．Local source of the interference which in－ cluded transmissions of music and

From all quarters

A potential threat to the low－frequency
end of the 14 MHz band could arise from the demands to be made by many countries at WARC79 for a new
136 MHz broadcasting band extending 13.6 MHz broadcasting band extending right up to the edge of the 14 MHz
amateur band．Even if the broadcast stations keep within their proposed band，one can imagine the effects of a
500 kW station with large aerial array 500 kW station with large aerial array on，say， 13997.5 kHz －and even more
vividly the possibility of the＇jamming＇ stations it would be likely to attract！ In what is clearly an effort to keep down the cost of amateur equipment，
American and Japanese firms are intro－ American and Japanese firms are intro－ ducing new low－power（ $10-20 \mathrm{~W}$ ）h．f．
transceivers which could later be used with linear amplifiers or with v．h．f． transverters．Examples include the Trio TS120V and the Atlas 110 which in the USA is being sold（less power supply）at $\$ 388$（about $£ 200$ ）and is being claimed as＂the first price breakthrough in
amateur radio equipment in a decade．＂

In brief
 brief

The Irish Department of Posts \＆Teleg－ raphs has introduced a Class B licence and such licences will be available to
British Class B amateurs visiting the British Class B amateurs visiting the Republic．．At the end of 1978，the number of
24,711 ，an increase of 1427 during the year．．．For the first time membership of year．．．For the first time membership of
the RSGB has exceeded 23,000 in 135 countries ．．．The 1979 ＇Jamboree－on－ the－air＇organised by the Scouts will take place over the weekend tue to held
$20-21$ ．．．Mobile rallies are due to at：June 24 Longleat Park and Castle－ wellan Forest Park（Bangor）；July 1
Upton－on－Severn． Upton－on－Severn．．．Raynet（the amat－
eur emergency service）has been eur emergency service）has been
authorised to provide ship－to－shore radio links up to two miles from the shore，during oil－pollution operations．
PAT HAWKER，G3VA vividly the possibility of the＇jamming＇ stations it would be likely to a
ATHKE，G3VA

WIRELESS WORLD, JULY 1979
the importance of reflections at think of one energy current $E \times H$ flowing backwards along its previous path, passing through the next portion of forward travelling energy current. This superposition of forward and the phrases "phase velocity" and "group velocity") has prevented a clea "group velocity") has prevented agnetic

For fifty years, technology did not give us the power to drive the medium with an electromagnetic signal. With the low power at our disposal, all we could do was resonate the medium with periodic (sinusoidal) excitation in th same way as we move a child on a necessarily flowing in both directions most of the forward energy returns to aid the source on the next cycle.
Our inability to drive a medium except periodically insinuated itself into our group psyche, unti we came (and even that it was sinusoidal). Implicit in this view were the wrong beliefs that (1) electromagnetic
(2) $E / H=\sqrt{ }(\mu / \epsilon)$ is not always true (e.g. when two waves are passing through each other so that H cance but E does not, so that $E / H=\infty$, and speed of light $1 / \sqrt{ } \mu$
The absurdity of this third idea is easy to demonstrate if we consider a two directional highway. If all cars move at 60 m.p.h. but some (A per hour) move westwards, no one would argue that th otal passage of cars eastwards per hou past a reference point, that is, $(A-B)$ f cars by the formula
f cars by the formula
Flow of cars $=(A-B)$ per hou
Distance between cars $=L$
herefore velocity of cars $=(A-B)$ m.p.h.
ubconsciously, with phase velocity an ome such calculation.
Some ten years ago the successfu manufacture of high speed (1ns) logi elements capable of driving a 100 ohm or fifty years, to drive a medium rathe han gently resonate it, as a matter of normal routine. Those driving a high peed logic step could clearly see ravelling at the speed of light for the remaining unchanged on its journey For the first time for seventy years, high speed digital engineers were privileged o see the Heaviside signal, an un changing slab of $E \times H$ energy current ne logic gate to the next. Reflection were prevented by proper termination at the destination, so that notions of
evaporated. We saw a slab of energy unaltered, to be absorbed by the ter minating resistor at the destination.
At this point we just had to unburden ourselves at the theoretical level of beautiful vision resulted, now called the Heaviside signal, of a lateral strain $E \times H$ (where $E / H=\sqrt{ } \mu / \epsilon$ which by definition travelled forward at velocity $1 / \sqrt{ } \mu$. A it travelled forward it filled (or probed)
the space ahead of it in the same way as the ripples on the surface of a pond will fill the space (surface) as they come to it. Logic designers maintained a near constant aspect ratio in the space to a change in aspect ratio (= change of characteristic impedance, better termed characteristic resistance) some of the energy current would double back on its tracks according to the well-know lead back to the old "phase velocity" and "group velocity" notions; rather the slab of energy current split into two slabs, one to continue forward and the other to return, both slabs continuing to probe, or fill, the space
them on their journeys.
The Heaviside signal offers us a dramatic simplification of our view of the fundamentals of electromagnetic theory

Definitions
First define energy current (=TEM wave $=$ Poynting vector) as our frimitows:

Now V^{μ} / ϵ and $1 /{ }^{\prime} \mu \epsilon$ can be indepen-
us define
(a) $\sqrt{\frac{\mu}{\epsilon}}=\frac{E}{H}$
which defines a constant of proportionality for the medium
(b) $\frac{1}{\sqrt{ } \mu \epsilon}=$ velocity of propagation c,
again a constant for the medium
(c) Define $D=\epsilon E, B=\mu H$

Derivations

$\frac{E}{H}=\sqrt{\frac{\mu}{\epsilon}}, \quad B=\mu H$
$\frac{E \mu}{B}=\sqrt{\frac{\mu}{\epsilon}}$
$\frac{E}{B}=\frac{1}{\sqrt{1 \mu \epsilon}}=c$
$\begin{aligned} & \bar{B}=\frac{1}{\sqrt{ } \mu \epsilon}= \\ & E=B c\end{aligned}$
$\begin{aligned} & E=B C \\ & . E y \text { definition }\end{aligned}$
$c \frac{\partial E}{\partial x}=-\frac{\partial E}{\partial t}=-c \frac{\partial B}{\partial t}$
$\frac{\partial E}{\partial x}=-\frac{\partial B}{\partial t}$

This is equation (1251) in Cate (G) W. Carter, The Electromagnetic Field in its Engineering Aspects, Longmans, 1954, page 268), when he believes he is deriving the TEM wave, which is supposed to result from a causality relationship between E and B
(Faraday's law of electromagnetic induction). Carter is clearly developin the rolling wave.
We see then that the equation $\partial E / \partial x=-\partial B / \partial t$ is a simple derivation
from the definition of the Heaviside from the definition of the Heaviside
signal and is not based on $\partial B / \partial t$ causing E, as Faraday thought he had discov-
We have shown that the passage of We have shown that the passage of a has mushroomed around it does not rely on a causality relationship (or in terchange) between the electric and magnetic field. Rather, they are co existent, co-substantial, co-eternal. The medium can only be strained in the two proportion. [In a similar way, pressure in a liquid in direction x does not cause pressure in the y (and z) direction; the co-exist.]
Faraday's great discovery in the 1830 s was not electromagnetic induction; not a causality relationship. His great
achievement was to discover that change was important. This started us postulated primitive, the Heaviside signal, which can only move; it canno stand still. Heaviside put together the main features of the new concept, but it took another century to put flesh on to the bare bones.

Reference

Reference

1. Oliver Heaviside, Electromagnetic
Theory, 1893, London, page 28 section 30 .

Appendix $1{ }^{\circ}$
By convention, if a voltage step is travelling from left to right (i.e. in a positive direction) it
$\frac{\partial E}{\partial t}$ is positive but $\frac{\partial E}{\partial x}$ is negative. This
(reversal) problem is well known by any-
one who has drawn out an oscilloscope trace on to paper with voltage and distance trace on to paper with voltage and distance axes
This explains the minus sign in equation (4) in the article. When we travel, we gain
distance while we lose time. However, we distance while we lose time. However,
regard our velocity $d x / \mathrm{dt}$ as positive. regard our velocity $\mathrm{d} x / \mathrm{dt}$ as positive.
It is strange that this ambiguity in convention had led to a negative sign in
electromagnetic

duced the idea of a "Lenz's law" reluctance,
or back e.m.f., in which lies nested the idea of or backe
causality
$i \rightarrow \int \mathrm{Hdl} \quad$ and $\frac{\mathrm{dB}}{\mathrm{d} t} \rightarrow \nu$
In fact, electric and magnetic fields have a
positive relationship, and co-exist rather than cause each other.
c $\left|\frac{\partial E}{\partial x}\right|=\left|\frac{\partial E}{\partial t}\right|$
Therefore, since by convention $\partial E / \partial t$ is positive, $\partial E / \partial x$ is nega
we must conclude that
$\frac{\partial E}{\partial x}=\frac{\partial E}{\partial t}$

Appendix
explained
versions of the transverse electromagnery wave have been described and comparade.
These were the rolling wave and the Heaviside signal. This roppendix contains the first half of a very clear descritition of the rolling
wave taken from "Fundamentals of ElecWave taken from Fundamentals of Elec-
tricity and Magnetism by Arthur F. Kip,
Professor of Physics, University of CaliforProfessor of Physics, University of Califor-
nia, Berkeley, published by McGraw-Hill, nia, Berkeley, published by MMGraw-Hill,
1962, page 320 O. Only enough of that descrip-
tion is reproduced to make his approach tion is
clear. "... Our demonstration involves the use of the first two Maxwell equations to show that such a postulated time and space variation of
E gives rise to a similar time and space variation of H (but at right angles to E) and
that this H variation acts back to cause the postulated variation in E. Thus, once such a wave is initiated, it is self-propagating.
"The figure below is used to show "The figure below is used to show the
application [of Faraday's law of induction] to appication [of Faraday's law of induction] to along the x warection. A convenient closed path is drawn in the $x y$ plane, around which
we shall take the line integral of E. This is we shall take the line integral of E. This is
equated through [Faraday's law] to the rate oquated hangeough flux H through the plane
of chade
oounded by the path of the line integral Ony bounded by the path of the line integral. Only
the vertical parts of the line integral contre vertical parts of the line integral con-
tribute since E is in the y direction, so that
$E . \partial x=0$. If we go around in a counter. $E . \partial x=0$. If we go around in a counter-
clockwise direction, the line integral around the path chosen becomes

where we are to take the values of E_{y} at
$x+d x$ and x, respectively. The difference $x+d x$ and x, respectively. The difference
between these two values of $E y$ at the two positions is $(2 \mathcal{E}, / \partial x)$ dx, so we can write the line
integral of Faraday's law of induction as
$\frac{\partial E_{y}}{\partial x} \mathrm{~d} \dot{x} y=-\mu_{0} \frac{\partial H_{z}}{\partial t} \mathrm{~d} x \mathrm{~d} y$
Since this relationship is true for any area dxdy , we may write
$\frac{\partial E_{y}}{\partial x}=-\mu_{0} \frac{\partial H_{z}}{\partial t}$
(This ends the extract from Kip. To get to
he Carter equation we have to replace μH by B, of course.)

This article is taken from "Electromagnetic
Theory", published by C.A.M. Publishing, 17 Theory", published by C.A.M. Publishing, 17 King Harry Lane, St Albans, Herts. The next
seminar by CAM Consultants on digital
electronics design will be held at St Albans on electronics August $2-3$.

WAVELENGTH CHANGES ON LF AND MF
There has been surprisingly little reaction from your readers to the BBC a.m. sound radio changes which, although publicised as
wavelength changes, have turned out in fact avelength changes, have turned out in fact
and more importantly to have been large power and transmitter location (or alloca-
tion) changes. In this area for example Radio 3, previously received as a strong inter3, prence-free signal from Daventry (150 kW . 464 m) is now radiated from Brookmans Park at the reduced power of 50 kW . In conse-
quence this programme suffers interference, quence this programme suffers interference,
fading and distortion after dark. Jugged from
a car radio the Daventry transmitter gave a car radio the Daventry transmitter gave a reliable service extending from the south
coast to north Yorkshire and it is surprising therefore that this transmitter should have
been closed down instead of merely being been closed down instead of merely being
switched from 464 to 247 metres. switched from 464 to 247 metres.
One feels compelled to ask what sort of a new wavelength plan was agreed by ou bureaucrats which permitted an importan shared with a foreign station?
In contrast with what has happened to Radio 3 in this area we now have two
powerful transmissions of both Radio 1 and Radio 2 (i.e. four $140 / 150 \mathrm{~kW}$ transmitters on 275, 285, 330, and 433m) located at Brook mans Park of ind perienced on one wavelength an alternative is available in each case
AsI am unable to see the need for two pop channels and require neither, I feel strongly
that there is gross imbalance between the service provided for Radio 3 on the one hand and Radios 1 and 2 on the other. In fact it
would appear that Radio 3 has been down would appear that Radio 3 has been down
graded to the level of local radio becaus Radio London (206m) is transmitted from 3 (50 kW). If the latter power is considere necessary to provide local coverage for Radio London then surely much higher power Needed to serve the larger Ra.io 3 area. to say "switch to v.h.f.," but why should have to go to the expense of replacing my ype just to receive one station? Furthermo having gone to the trouble and expense of constructing an excellent Wireless Wor is exasperating to find that many musi programmes are not radiated on v.h.f. In Stead these frequencies are reserved for Ope where neither wide frequency range nor stereo are required.
In conclusion,
, and recognising that is clear that nationwide (and neglectin ransmitters below 10kW) the changes hav produced an increase in the aggregate powe
of Radio 1 transmissions by a factor of thre 260 up to 740 kW) and of Radio 2 by nearly 50% (400 up to 580 kW), so that no less than
1320 kW are devoted to pop. In many areas 1320 kW are devoted to pop. In many areas in North America where one may tune from one end of the band to the other finding nothing bul inconsequential talk, advertis H Crook J. H. Croo
Aylestury
Bucks

When the BBC announced its wavelength changes a year or so anoo. Ithink it was pretty
obvious that it had decided to allocate its obvious that it had decided to allocate its tradience size rather than the quality or importance of the service, presumably with an eye to obtaining the largest possible cial services in order to justify its annual cial services in order to justify its annual
claim for an increased licence fee. If this ploy claim for an increased licence fee. If this ploy
had resulted in the maintenance of Radios 3
and 4 and and 4 at their existing coverage, it might have
been justified, but all that actually seems to been justified, but all that actually seems to
have happened is that they have both dis appeared from the medium waves to all The Radio 3 transference to 1215 kHz has been a complete disaster in this area.
Whereas we previously had an excellent Whereas we previously had an excellent daytime signal ruined by continuous phase distortion caused by the large number of transmitters on the channel, while at night it
is simply a non-stop babble of foreign inter is simply a non-stop babble of foreign inter-
ference. We were told by the BBC that 647 kHz was going to be unusable because of Continental interference (from Albania, in daylight?) so the very logical step was taken
of handing the channel over to the European Service, so they could have the fun of figh ng the interference on its home ground.
The move of Radio 4 to the long wave The move of Radio 4 to the long wave
channel was a move I thought was sensible and so it has proved to be as far as car radio reception is concerned, but it was certainly a around the house are concerned. Long wave seem much more liable to all sorts of inter
ference, apart from most erence, apart from most small portables being apparently less sensitive on this
waveband than on medium waves. An ad vantage I thought might exist, the ability to listen to Radio 4 while on the Continent, ha
been partly nullified by the Russian been partly nullified by the Russians
apparently opening up a new transmitter on apparently opening up a new transmitter on
the same frequency. Incidentally, just why is ther long-wave stations? Last year, other long-wave stations? Last year,
noticed while in Northern Scotland that although this station was rather difficult to isten to, I had no problems hearing the
French stations on 164 and 181 kHz loud and clear.
Might I dare to suggest to the BBC engin-
. Mers that they consider the following points?

1. Multitle transmisions on a single channel are a mistake. Unless all transmitters are phase-locked; all it does is guarantee grind-
ing phase distortion in many areas where
otherwise the field strength would be per-
fectly adequate. In the case of R3, why not use the now disused Daventry mast to radiate 1215 kHz at high power (500 kW ? and
switch off all the other transmitters except maybe some in Scotland? This wouldn't help listen at other times.
2. Step up the radiated power on 200 kHz . The Droitwich transmitter and aerial are rather
old and small by modern standards - is it not time the BBC built a new single-purpose station with a really big and efficient aerial? 3. What about duplicating the R4 service on a
single short-wave channel, as the Germans single short-wave channel, as the Germans
do? The World Service can surely spare one do? The World Service can surely spare one
channel in the 49 metre band. Having the 49 metre band on my car radio, I often listen to
the World Service on 5975 kHz while driving the World Service on 5975 kHz while driving
around the UK and Continent, and find reception most reliable even although it is not intended to cover the area.
W. Blanch
$\begin{aligned} & \text { Dorking } \\ & \text { Surrey }\end{aligned}$

The BBC replie
Dr Crook and Mr Blanchard have provided some interesting and thoughtful comments on the frequency changes we made last
November, which reflect in many ways the November, which reflect in many ways the
correspondence which we have had from listeners generally.
listeners generally.
We have to face the fact that conditions on the long and medium wavebands have been
deteriorating for many years, due to the increasing number of transmitters in the European area and elsewhere, and to the use of higher and higher powers. In reviewing the
results of the Geneva Conference, it was clear that the interference levels on many of the UK frequencies would increase, as the
new transmitters authorised at Geneva came new trarvice. (The Plan provides for the period 1978 to 1989 and many of the stations listed have not yet been built.)
The BBC has four national radio network
and with the medium and long wavelength and with the medium and long wavelengths
available it is possible to provide good, but not perfect, coverage for three of them, and partial coverage for the other. V.h.f. does no
provide a complete alternative, firstly beprovide a complete alternative, firstly be-
cause many listeners do not have or use v.h.f. cause many listeners do not have or use v.h.s
receivers, secondly because at present we
only have enough v.h.f. frequencies for three national networks, one of which is shared by Radio 1 and Radio 2.
In planning the changes the first priority was given to Radio 4, which we wanted to
make readily available throughout the United Kingdom. Apart from its large audience, Radion. 4 is relied upon by many
people for important services such as news, people for important services such as news,
weather forecasts and motoring information Thus, it was decided to use the one long wave hannel for Radio 4.
Secondly, it was decided to improve the
coverage of Radio coverage of Radio 1 , which is our most
popular programme. This could only be nels. These provide almost national coverage nels. These provide almost national coverage
in the day time, but something very much
less at night time. less at night time.
Thirdly, we wanted to retain the best pos
sible coverage for Radio 2 our second mos sible coverage for Radio 2, our second most
popular programme. With Radio 4 on long wave, this could only be done by using tw medium wave channels, to provide
coverage roughly similar to that of Radio 1 . This leaves Radio 3, with only one medium wave channel remaining. Radio 3 has an

UNIONS AND

For many years I have looked upon your journal as one which takes a constructive disappointing to see two pages of the May
issue devoted to the repated disutive plugging of a trade unionist ("The role of the speciaist in microoelectronics
Professional engineers in the private sector, where I work, are not highly militant
However the exhertations However, the exhortations of unions for
engineers to take up cudgels and join the engineers to take up cudgels and join the
unions are backed up by frequent incompetence of the employers' personnel neglected by employers who appear to dea only with 'the union'. As the years pass, the
worsens.
I have
Thave seen so often that preoccupation
th union matters pulls the attention in the opposite direction to work. By joining the staff of a company the engineer signifies his engneer thinks he is worth better treatment an employer who will offer him something better. Until that time, he is under contract to provide a willing service for the rewards
which he accepts by agreeing to come to work.
If, on If, on the other hand, he cannot find a
better offer, he will not improve society by resorting to artificial salary boosters such as
J. M. Bentley

Leics

OVERSIGHT IN

COSMOLOGY
It was refreshing to have Mr Hulme answer
my point so painlessly (June letters) and confirm that although the energy is present there can be no detection that was my poin cannot bring myself to agree with his radius figure of 10^{17} light years. This gives a discrete frequencies (hydrogen and helium for each frequency, which seems good enough odds to escape detection!
Plucking a figure out of the air, let us
assume that light which starts at, say, 10^{-6} $M \lambda$ is red shifted to $1 M \lambda$, then the energy
density at the surface of the earth will be of the order $10^{64} \mathrm{~W} / \mathrm{cm}^{2}$ (quite wrongly, I used calculations). This radiation will pass tmosphere and almost everything else because there can be no excitation and therelight be red shifted? Light is a transvilu wave propagated from what is essentially a point source. This being so it is forbidden, by If the propagation characteristic of space constant, and surely it must be, then light egardless of D . linearly with distance This seaves a bit of a problem though,
doesn't tiv I mean, what shall we do with all that radiation pressure which doesn't cancel? Or shall we call it gravity? Well, I know that if

I call it gravity I can quantify it into the
strong force so I shall call it gravity. You know, I really do believe that I have
comprehensively falsified Albert Einstein's general relativity!
By the way, the pressure was the second oversight!
Alex Jones

MILITARY ELECTRONICS
The January editorial on the prostitution of
electronics for military purposes is epecrionics for military purposes is, in my
opinion, probably the most important item which Wireless World has published in its
sixy-odd years of existence, but the reaction of readers, judged by the letters published, has been disappointing. to equate swords with ploughshares is not convincing. The evil that is done by one far
exceeds the good which is done by the other. It is no more necessary to make swords in order to produce ploughshares than to do
vice-versa, and the fewer swords that we vice-versa, and the fewer swords that we
make the more ploughshares we will have. In the same issue I attempted to put the.
blame onto the militarists of both sides, but picture by concentrating attention entirely criticisms, and will mentioning the massacres at Katyn and of the Russians who were returned under the Yalta
gareement, but the actions of the Soviets need to be balanced against the annexations
of large areas of Mexico by the USA their reatment of Indians and blacks, their instaltatorships in Taiwan, Iran, Chile, South Korea and most of South America, their
appalling actions in Vietnam, which included according to Colby the CIA chief, the execuregime.
Let the circuit be brought back into
balance traditional role and does not returns to its many electronics journals in the USA, (and Roy C. Whiteheastry
Sutton
Surrey

XCLUSIVE CB SYSTEM

 OR BRITAIN?read with some alarm the letter from Mr
ames Bryant to the previous Prime Minister James Bryant to the previous Prime Minister
News, April). So Mr Rryant wants Britain to
lead the world into dio". In fact his main objective appears to e to ensure that in the event of the legalizatandard system will be specified which nonenable an exclusive "club" of British
manufacturers to cash in on this new consumer bonanza; the consumer being at the
mercy of any mutual "arrangements" ding prices etc they can get away with. wonder what Mr Bryant's interests are in all
this? Is he in the employ of one of the
un-named

MRELESS WORLD, JULY 1979
fact reference this paper at the end of th
December 1978 article In this we do not claim to be treating the case of circular capacitor in the mathematica appendix．We in fact refer to Fig． 2 which
represents a uniform end－fed transmission represents a uniform end－－ed transmission
line．This case is treated since it demonstrates the key features without requiring unneces sarily complex mathematics． Incidentally，Dr Lago says that a zero
risetime step is a＂physical This interesting statement merits further analysis．One would like to know whether he
is attacking the is attacking the concept or its practical
realisation，i．e is he against the Platonic ideal of a step or is he saying，as might Aristotle， that such a concept is not useful lecause it is
not practically realisable？If the former then not practically realisable？If the former then
we assume he is also opposed to the sine wave concept since infinite time is required
for its perfect realistion if the for its perfect realisation；if the latter then
what physical principle determines whortest risetime obtainable in practice？In
shet the latter case the principle must precede the concept，i．e．，there must be no circularity．
Finally，Dr Heaviside）when he states that＂one should regard currents and charge distributions as the consequences of electromagnetic waves
rather than as the sources of these waves＂In rather chan is $\epsilon(\partial \mathrm{E} / \partial t)$ a current and therefore
that an effect or a field and therefore a cause，or is I．Cath！，M．F．Davidson，D．S．Walton
Reference
Catt，IEEE Trans．EC－16，Dec．1967， 763.

CITIZENS＇BAND IN THE USA
Recently，while returning from London，I
picked up a copy of your magazine at the picked up a copy of your magazine at the
Heathrow Airport news stand It Heathrow Airport news stand．It appears
from the issue I have that certain people in Great Britain are contemplating something akin to the citizens＇band，which here in the
States is presently the Federal Communica－ States is presently the Federal Communica－
tions Commission＇s principal headache． Although，as a licensed amateur，I disliked losing the eleven metre band，which was one
of my favourites，I originally thought the idea of my favourites，Ioriginally thought the idea
of a citizens＇service wasn＇t all that bad． Now，in retrospect，permit me a few comments and observations．
impossibility．The FCC could double its existing field staff and still be unable to police the eleven metre band．
2．In a total of six ho
c．b．channels here in Grand Rapids，fewer than 10% of the contacts monitored were egal by existing rules．
with stations heard throughout the spectrum with stations heard throughou
from 26.6 MHz to 27.998 MHz ．
4．Although the FCC has banned commer operating in the $27-29 \mathrm{MHz}$ portion of of the spectrum，linear amplifiers for 27 MHz are
readily available and widely used in circles．
circles．Amateur transceivers are converted to
c．b．use，giving v．f．o．control and power levels c．b．use，giving v．f．o．control and power leve
greatly in excess of the legal maximul greatly in excess of the legal maximum．
6．Illegal linear amplifiers are often ad justed improperly，resulting in interference
erferenanity，vulgarity，and deliberate in terference with other stations is common． The above is only a partial listing of the
contents of the Pandora＇s Box that is c．b． radio．There are，of course，many operators that do their best to operate legally，but they
have little chance when competing with the have litile chance when competing with the
impossibly large number of＂dip－sticks＂that impossibly large number of＂dip－sticks＂that
inhabit the 27 MHz jungle．
The sol The solution．．．？If Great Britain cannot
possibly survive without a citizens＇service possibly survive without a citizens＇service，
put the miserable thing up high enough in puequency that the technology is beyond the
ken of the week－end ken of the weel－end experimeynter and
charge a good stiff licensing fee About charge a good stiff licensing fee．About fifty
pounds per year sounds about right to me！ pounds per year sounds about
（Name and address supplied） Michigan
USA．

INTERFERENCE FROM 555 TIMERS
The 555 and 556 timer integrated circuits are very popular and useful devices．But they are
notorious for their tendency to interfere with neighbouring circuits．Interference is through transients on the power supply line． These transients are longer and heavier than
those caused by t．t．l．，because the 555 has a high－current totem pole output，which is switched comparatively slowly by the timing Incuit．
In designing our CCTV Target Locators we ffectively suppressed by decoupling was not ters fitted near the 5555 s．But we obtained tors fitted near the 555 s ．But we obtained a
cheap，effective solution，by fitting two ferrite suppressor beads onto the +5 V supply teach 555．Suitable beads are RS Com－ ponents Type 238
Richard Baker
Hampton Video Systems Ltd
Twickenham Twickenham
Middx

MICROPROCESSORS FOR CALCULATION

am delighted to see your series of articles on A scientific computer＂，using a micro－
processor in conjunction with a＇number－ processor in conjunction with a＇number－
cruncher．＇
Having recently started working with microprocessors，I do not think the common items available are at all suited to calcula tions of any magnitude or complexity and
consequently they may well be of far less value than the pundits would like us to think． I still feel that there is far too much rather desperate seling of what is available rather
than a real attempt to find out what the market wants．
Name and address supplied）
Procurement Executiv
Ministry of Defence

WIDEBAND NOISE

REDUCER
I should like to compliment D．L．Harrison on his compander design described in your
November 1978 issue．Used in conjunction November 1978 issue．Used in conjunction
with a Revox A77，it enables me to enjoy
recordings made at $33 / \mathrm{in} / \mathrm{s}$ as much as if not The virtual elimination of tape noise is by no equally to the comfort of listening is the fact that I no longer need to record at a high level in order to ensure an acceptable ratio of can remain undistorted．
Constructors of the compander，like
myself，withou myself，without access to distortion－
measuring equipment should nevertheless measuring equipment should nevertheless
include the optional trimming components shown dotted in the circuit diagram．A set－ ting can be made by ear which is audibly
better than leaving pins 8 and 9 of the col pander i．c．disconnected．The adjustment is made easier if a reasonably pure tone from an oscillator can be played through the com－
pander when it is switched to the expand mode．
F．W．Baldock
mode．
F．Waldidock
Salisbury
Salisbury
Zimbabwe－Rhodesia

CARFAX CONFUSION
Horsham is a quiet Sussex country tow Horrham is a quiet Sussex country town，
normally at peace with the world．Although not well bestowed with dreamy spires it has as your picture shows（see p．53，May 1979） It would be interesting to know the name of the spy who provided you with that photo raph and what was said in the accompa nying message．I also wonder who at Wire－
less World has assumed that the home of lost causes had suddenly become up to date．Ve aff vays of bending beams but if OXford is to
be the real target I hope that Horsham is not e the real target I hope that Horsham is not the actual victim． London N6．

Full marks to sharp－eyed reader Fadil！Ve aff vays
of confusing the reader for whic
 However，Uust to keep the record straight，oxford
doos have a Caraxa，a cros－roads in the middo o
the town．And the origin of this old name，thought the town．And the origin of this old name，thought
to be the Latit quadrifurus or the French uatre vios，
ter seems quite approppriate to a traffic information system
by indicating the basic four directions in which a
vehicile may travel．- Ed．
 tothe Dynamometer？

The new Feedback Electronic Wattmeter EW 60 could be your ideal replacement for the conventional dynamometer

It＇s inexpensive yet amazingly versatile，reliable and efficient．A self－contaned unit which needs no other accessories，the Feedback EW 604 is really robust－both accessories，the Feedrack Ely

It performs over a remarkably wide range of power （ 250 mW to 10 kW full scale），current（ 50 mA to 10 A ）voltage （ 5 V to 1000 V ）and frequency（d．c．to 20 kHz ）．

The instrument is fully protected against misuse or incorrect terminal connection．It＇s the ideal answer to most power measurement problems in power systems，audio systems，heating plant，vibration testing，pumps，machine－ tools，compressors，generators，aircraft systems，transformer
domestic equipment and education．

It＇s an instrument whose wide ranging performance should bring an equally wide grin to tearns it＇s covered by a two－year guarantee．For fully detailed literature on the Feedback EW 604，simply complete and post the coupon today．Or contact our distributors
P．O．Box 19，Orchard Road，

Pコーコールース

 Please send further infName
Position
Company
Address

Feedback

 mecanacsPark Road，Crowborough，Sussex TN6 2QR Telephone：Crowborough（08926） 3322.

The FeedbackWattmeter will make even the testiest tester smile！

.here is the new dynamic range

Two leading names in electronics - Wayne Kerr and Radford - have merged their expertise to provide a comprehensive new range of Audio Test Instruments.
The Wayne Kerr Radford range includes distortion measuring sets, frequency response analysers, digital display stores, low distortion oscillators, audio noise meters and high sensitivity voltmeters.
This is good news for all professional audio users. ... for recording studios, radio \& TV broadcast stations, laboratories, service workshops, film sound \& audio-visual engineers, musicians \& producers and audio equipment manufacturers
Wherever rapid, accurate and high-sensitivity audio measurements are vital this new combination is without equal.

Wayne Kerr Radford The dynamic range

A scientific computer - 4

More programming in high and low level languages
by J. H. Adams, M.Sc.

THE MORTGAGE PROGRAM in Table 8 computes, from a given principal, annual interest rate and period for which a loan is to run (represented by and T in the program), the month y repayment and repayment schedule for
a
stage. The format dose follows that of standard BASIC. In line 6, an interest factor

$$
\mathrm{K}=1+\frac{\mathrm{I}}{100}
$$

s calculated, whilst the expression evaluated in line 7 is

$$
\mathrm{B}=\frac{\mathrm{K}^{T}}{\mathrm{~K}^{\mathrm{T}}-1} \times \frac{\mathrm{IP}}{1200}
$$

using the stack operation ENT to push K^{T} into the Y and Z registers of the stack as shown in Table 9. A specia

9 Stack operations for the mortgage program.

Command	x	Y	2
yx	$\mathrm{K}^{\text { }}$	-	-
EnT	$\mathrm{K}^{\text {T }}$	$\kappa^{\text {T }}$	-
EnT	$\mathrm{K}^{\text {T }}$	$\mathrm{K}^{\text {T }}$	$\mathrm{K}^{\text {T }}$
1	1	$\mathrm{K}^{\text {T }}$	$\mathrm{K}^{\text {T }}$
-	K^{T}-1	$\mathrm{K}^{\text {T }}$	-
/	$\frac{\mathrm{K}^{\mathrm{T}}}{\mathrm{~K}^{\mathrm{T}}-1}$	-	0

rint format is used in lines 13 and 19 to ound the displayed values of B and P to he nearest penny
Table 10 shows two separate pro rams cascaded into the programming rea. The first is run by 4 and is a game which simulate he landing of a rocket on Earth. Lines 4 to 8 set a fuel level of 120 (F), a velocity of $-50 \mathrm{~m} / \mathrm{s}(\mathrm{V})$ and an initial height of $250 \mathrm{~m}(\mathrm{H})$. After presenting this inforplayer to type in a one second burn of uuel, B, which is checked against the present amount of fuel (line 14) and then used to reduce the velocity by B-5, provided that there is enough fuel
available.
T

The aim, of course, is to simu taneously reduce the velocity and height o zero, without running out of fuel. The

```
Table 8 Print out of a mortgage program based on the high level language.
    CU3 PhilNT",
```



```
        100/1
```



```
        12...*REPAYTIENT SCHEDULE...
        *)
        O24 END X
    ODED
(x)=0
O4 LET C=0
    *)
014
    lol
THEN 25
j=H
M+
MOUT OF FUEL PREPARE TO CRASH.
```



```
    " "uell done, you have landed."
    IF V=0 THEN 35 laNDED TOO FAST. have a NICE stay"
038 PR1
    RIRT nT
lol ERASE 
los
    ET
    *)
    GGTO 102
    N
100F
```

0
0
0
0
0
0
0
0
0
0
0
0
0
0
ian equations of motion; $s=u+1 / 2 a$ and $v=u+a$. Crash velocities are worked
out (line 30), using $v^{2}=u^{2}+2 a s$. out (line 30), using $\nu^{2}=u^{2}+2$ as. In the
program execution, C acts as a go program execution, C acts as a go
counter, clearing the screen every 15 burns. This might seem unnecessary, as it takes some unusual playing to avoid a crash and not win in that number of attempts. There is a simple technique but I will leave the reader to deduce this.

One of the most economical solutions uses burns of $0,0,0,25$ and 50 . For a can daunting version, the 2 in line 18 can be made an inputted variable
(which will affect the acceleration due to gravity) or even more difficult, a function of the value of H .
The second program uses Newton's method to solve the equation $F(x)=0$. The equation in this case,
$\operatorname{Ln}(\mathrm{X})+3 \mathrm{X}-10.8074=0$, is written at line 200 and, as it is required twice in the

Table 11 Program for analysing the pre-amplifier in Fig. 19

Table 12 Computer run of results
for the pre-amplifier.

Fig. 19. Typical RIAA equalised preamplifier based on the MC1303. The results of a computer r
are shown in Table 12.

Table 13 Program
fifting satraght line.

WIRELESS WORLD, JULY 1979 program, it is called as a subroutine at Q , at line 100 , the computer calculates the next guess at Q by

$$
Q-\frac{F(Q)}{F^{\prime}(Q)}
$$

calculated by the approximation
Q1- $0.00001 \mathrm{~F}(\mathrm{Q})$
$\mathrm{Q} 1-\frac{0001 \mathrm{~F}(\mathrm{Q})}{\mathrm{F}(1.00001 \mathrm{Q})-\mathrm{F}(\mathrm{Q})}$
Line 125 assigns the absolute value of G to T, G being the difference between two successive values for Q and, if T is line 130 , the program branches to line 190 and prints out a final rounded solution for X .
Note that if these two programs, or any material with more than 31 lines, are loaded, a LIST or DEL command will list the first 31 and then display
LIST INCOMPLETE, preceded by the next valid line number on the top line of the screen. To display the rest of the program, or the next 31 lines, press the pace bar.

cientific numbers

The computer switches to a scientific display on numbers greater than $99,999,999$ or less than 0.0001. Numbers in response to an INPUT line, may be in response to an INPUT line, may be
entered scientifically or in floating point, provided that they are within the computers range. When entering scientifically expressed numbers, a space is not required at the end of the
figures because the E entered in the figures because the E entered in the more digits are to be entered. The standard form of one figure in front of he decimal point will always occur in displayed results, but need not be adcomputer recognises $1.00 \mathrm{E} 02,100 \mathrm{E} 00$, $0.01 \mathrm{E} 04, .001 \mathrm{E} 05$ or $1000000 \mathrm{E}-04$ as all being 100 . This is demonstrated in the next program. Fig. 19 shows a recomMC1303 dual amplifier used as a RIAA equalised phono pre-amplifier. Tables 11 and 12 show the program for, and a run of, an analysis of the circuit. Values are entered in the most convenient units,
resistors in kilohms, D and E in picofarads, and F in microfarads, and then scaled to their basic units in lines 8 to 23 . The equations for working out the gain
at various frequencies are;

$$
\mathrm{G}=1+(\text { WDA })^{2}
$$

$\mathrm{H}=1+(\mathrm{WEB})^{2}$
$I=\frac{A^{2} D}{G}+\frac{B^{2} E}{H}$
$J=\frac{A}{G}+\frac{B}{H}$
$\mathrm{K}=\mathrm{WCF}$
$\mathrm{L}=\frac{\left.(\mathrm{J}-\mathrm{WKI})^{2}+(\mathrm{JK}+\mathrm{WI})^{2}\right)^{1 / 2}}{(2)}$ C $(\mathrm{K}+1 / \mathrm{K})$
The last equation is a good argument for Reverse Polish. Note that in;
line 26π can be called as PI.

WRELESS WORLD, JULY 1979 ROOT. In word recognition, the computer only consider he first and last letters or erable laxity in typing.
When establishing the relationship be tween two sets of data, the first test is sually one of proportiona straight line?
Table 13 lists a program which uses Table 13 lists a program which uses
linear regression to compute the intercept and gradient of the best fitting straight line for a series of pairs of coordinates (horizontal, then vertical) he values of M and C, and also take part in the calculation of a coefficient-of-determination, which gives a measure of the fit of the line to the coordinates. Note the use of the command OP at line 27, which clears and rese screen each time.

Low level programming

When low level programming is used, charts of the type shown in Table 14 are very helpful for translating between the mnemonics for the 280 operations and
the actual hexadecimal codes. If the charts are used in conjunction with the technical manual for the MK3880/Z80, program assembly and disassembly is

Table 14 Conversion charts for the $\mathbf{Z 8 0}$ instruction set.

Second character of $\mathrm{Z80}$ code								
	0	1	2	3	4	5	6.	7
0	NoP	LD BC,nn	LD(BC).A	InC BC	INC b	DEC B	LDB,n	RLCA
1	DJNZ	LD DE,nn	LD(BC), A	! NC de	inc d	DEC D	LD D.n	RLA
	JRNZ,	LD. L, nn	$\underline{L D(n), ~ H L ~}$	INC HL	INCH	DEC H	LD H,n	DAA
3	JRNC, e	LDSP, nn	LD(nn), A	INC SP.	inc(HL)	DEC(HL)	LD(HL),n	SCF
4	LD B, B	LD B.C	LD B, D	LD b, E	LD в.н	LD B,L	LDB.(HL)	LDB.a
5	LD D.B	LD D,C	LD D, D	LD D, E	LD D, H	LD D.L	LDD.(HL)	LD D,A
	LD $\mathrm{H}, \mathrm{B}^{\text {¢ }}$	LD H, C	LD H, D	LD H, E	LD H, H	LD H,L	LD H.(HL)	LD H,A
䒼菏	LD(HL), ${ }^{\text {c }}$	LD(HL).C	$\underline{L D(H L), ~ D ~}$	LD(HL), E	$\underline{L D(H L) . H}$	LD(HL).L	HALT	LD(HL),
$\frac{1}{2}$	ADD ${ }^{\text {B }}$	ADDC	ADD D	ADDE		ADD L	ADD(HL)	ADD A
	sub b	Sub C	Subd	Sube	subr	Sub L	SUBBL	suba
$\stackrel{\tilde{x}}{\underline{\Sigma}}$	AND ${ }^{\text {b }}$	AND C	AND D	Ande	AND H	AND L	AND(HL)	AND A
	ORB	or C	ORD	ore	ORH	ORL	OR(HL)	ora
c	RET NZ	POPBC	JPNZ,nn	JP,nn	cNZ.nn	PUSH BC	ADD n	RST 0
D	RETNC	POPDE	JPNC, nn	OUT A, (N)	CNC, nn	PUSH DE	SUB n	RST 16
E	RET PO	POPHL	JPPo,nn	EX(SP), HL	CPO,nn	PUSH HL	AND n	RST 32
F	RET P	$\frac{\text { POPAF }}{}$	JPP, nn	DI	CP,nn	PUSHAF	ORn	RST 48
	8	9	A	B	c	D	E	
0	EXAF,AF'	ADD HL, BC	LDA.(BC)	DEC BC	INC C	DEC C	LDC, ${ }^{\text {n }}$	RRCA
	JR, e	ADD HL, DE	LDA.(DE)	dec de	ince	dece	,LDE, n	RRA
2	JRZ, e	ADD HL, HL	LD HL,(n)	DECHL	INC L	DEC L	LD L, n	CPL
	JRC, e	ADD HL.SP	LD A.(nn)	DEC SP	INC A	dec A	LD A.n	CCF
4	LD C $\mathrm{B}_{\text {B }}$	LD C, C	LD C, D	LDC, E	LD C., H	LDC,L	LDC.(HL)	LD C, A
	LD E, B	LD E.C	LDE, D	LDe Et	LDE, H	LD E, L	LDE.(HL)	LD E,A
6	LD L, B	LD L, C	LD L.D	LD L, E	LD L, H	LD L,	LDL.(HL)	LD L,A
	LD A, B	LD A, C	LD A, D	LD A, E	LD A, H	LD A,L	LDA.(HL)	LD A,A
8	ADC B	ADC C	ADC D	ADCE	ADC H	ADCL	ADC(HL)	ADC A
	SBC B	SBC' ${ }^{\text {c }}$	SBC D	SBC E	SBCH	SBCL	SBC(HL)	SBC A
A	хов в	xor C	XOR D	XOR'E	XOR H	xOR L	XOR(HL)	XOR A
B	СР ${ }^{\text {B }}$	CPC	CPD	CPE	CPH	CPL	CP(HL)	CPA
c	Ret 2	RET	JPZ.nn		CZ,nn	CALL, nn	ADC n	RST 8
D	RET C	EXX	JPC, nn	in A (n)	cc,nn	@	SBC n	RST 24
E	RET PE	JP(HL)	JPPE,nn	EX DE,HL	CPE,nn	\ddagger	XOR n	RST 40
F	RETN	LDSP, HL	JPN,nn	E1	CN .nn	@	CP n	RST 56

@, DD or FD preceding undenined codes, exchanges the operand X or wresperivaly. Torth. n both cases the displacement, implicit in an indexed operation, follows the code.
CB and ED precede codes shown below.

```
                                    Op-codes preceded by CB
```



```
RLL RL(HL) RLA (%)
Sit test,01x xyy (binary)
    lcccccccccccccccccc
    MND,(C)
```



```
    A LDI CPI 
```

 .
 digit across the top
 To find the op-code corresponding to a particular mnemonic, reverse this process.
 quite easy. As an example, Table 15 Shows an analysis of the first part of the There are many subroutines in the computer's operating system and these being written. Table 16 lists the sub routines with their CALL addresses, mnemonics and a brief description of their functions. code programs is generally a matter of

Table 15	Operation of part of the BURP monitor.	
Hex bytes	Mnemonic	Operation performed

Table 16

-•**subroutines in machine code......
0254 LEAD PROVIDES LEADER FOR TAPE,
0260 TCHAR RECTRDS CAJ ON TARE

personal requirement and therefore the demonstration programs will probably One, however, listed in Table 17, which might be of interest to other teachers, shows the results when quanta of en 2048 atoms (as used in Nuffield A level physics). To generate the pseudo random numbers, a 17 -bit shift register with its input being the exclusive OR of
the 16 th and 17 th bits, is set up in the

Z80. There WIRELESS WORLD. JULY 1979 gives a display of the atomic matrix up-dated every 256 swops and RUN 1 COO does the same, but also totals, in
decimal, the number of sites with one decimal, the number of sites with one
quantum, with two quanta etc. quantum, with two quanta etc.
Modifying the byte 1 C 04 from 31 to 32 or 33 alters the initial filling up of the matrix from all ones to all twos or threes respectively.

Tape interface

The tape commands operate in the low level anguage, therefore, if a high level
language program is to be recorded, its final address must be noted from a high level LIST. When recording it is worth spacing the blocks of recorded data 45 seconds of tape, and individual blocks are then easier to find. The leader of stop bits recorded automatically at the start of each recording lasts for about four seconds, so, when a recordthe tape just into this leader, type READ XXX , i.e. the first three characters of the hex address, start the tape and then type the last digit of the address. In the kit of parts available for this the data stream and is turned on by the stop bits to indicate by flickering that data is being read in and, by steady illumination, that the recording has finished.
The TAPE command leaves the after the four second trailer, when the computer returns to the READY state the tone is left in the correct state for the next recording. When this trailer is must be interrupted by pressing a key. Although the receiver is fairly flexible about frequencies and gives a 1 or 0 , depending upon which side of 2 kHz the should be at least IV r.m.s. For recording, the output variable resistor should be set so that, without overloading the input of the tape recorder, it is possible rather than quality being the main criterion. There is no fine adjustment of the generated frequencies because of the flexibility of the receiver design Several different interfaces and tape decks have been tried, but a consistent lish, even with a judiciously placed finger slowing down the tape transport.
To be continued

ELESS WORLD, JuLY 1979

Converting between analogue and

digital quantities - 3

Analogue-to-digital converters using the feedback technique
by G. B. Clayton, B.Sc., Liverpool Polytechnic
n this section, the author examines the
commonly-used methods of converting analogue information into a digital form limiting the discussion to those types fo which cheap integrated circuits a btainable.

TWO MAIN CLASSES of analogue-todigital converter can conveniently be stablished: the feedback converter and the integrating type.

Feedback converters
The general circuit technique underlying the operation of a feedback converter is illustrated by the block diagram in Fig. 14, in which the system parator and digital logic circuitry. The logic circuitry increments the digital input number applied to the d.-to-a. converter and the comparator senses by the converter becomes equal in value to the analogue input signal which is to be measured. Conversion is complete when this equality occurs and the digital number which is then present at the d.a.c. input represents the
digitally-encoded value of the analogue input signal. The ramp type a.-to-d. converter, the tracking converter and the successive-approximation type are all feedback designs based upon the general schematic of Fig. 14, the three
techniques differing in the type of digital logic circuitry which they use.

Ramp-type converter. The ramp, or count-up, converter is probably the circuit consisting essentially of a counter. At the start of a conversion the counter is set to zero: it then counts up clock pulses, while the digital logic levels representing the count are converter. The count is stopped by the comparator when the converter output becomes equal to the externally-applied analogue input signal, at which point the stored count constitutes the digital A ramp-type converter system can be implemented by simply adding a comparator to the d.a.c. counter system described in Fig. 11 of part 2 of the shown in Fig. 15. The data inputs of the 4 -bit 74191 binary counters are con-
nected to logic 0 , whereupon bringing he load inputs on pin 11 to logic 0 set he counters to zero. When the load input is returned to logic 1 (open), cloc in incremented until the voltage I I R becomes equal to the analogue input voltage. The comparator output then goes to state 1 and stops the count. The static counter outputs represent the f the analogue input signal expresse as a fraction of the full-scale analogue nput, where the normalized full-scale nalogue input has the value $I_{\text {ref }} R$. $\mathrm{V}_{\text {in }}=255 / 256 \mathrm{I}_{\text {ref }} \mathrm{R}_{\text {in }}$, giving a digit output 11111111.
sion is completed at the instant at whic the d.a.c. analogue output becomes equal to the analogue input signal. The parison technique and in this cas conversion is completed when $I_{0}=V_{\text {in }}$ $R_{\text {in }}$. If the analogue input now decreases The digital output in a ramp-type a.d.c holds' until the analogue input in up again until equality of analogue input and d.a.c. output is again reached. The digital output in a ramp-type d.a.c thus represents the maximum value of the analogue input during the tim etween counter resets.
onverter is not fixed, but depends upon the size of the analogue input expressed
as a fraction of the full scale. In the system of Fig. 15
conversion time $=\left(V_{\text {in }} / I_{\text {ref }} R_{\text {in }}\right) 2^{n} T_{c}$
where n is the number of logic bits in the d.a.c., $\left(n=8\right.$ in Fig. 15) and T_{c} is the period of the clock pulses. For example, the clock frequency were 1 MHz ${ }_{c}=1 \mu \mathrm{~s}$ and a full scale less one t.s.b. would take $256.255 / 256=255$ us,

Tracking converter. This circuit is very similar to a ramp-type converter, bu mploys an up/down counter instead an up counter. A few simple changes to or and counters of the system of Fig. 15 will turn it into a tracking converter The comparator output is connected to the counter up/down control inputs on pin 5 , instead of to the enable inputs. verter controls the counting mode; if the output of the d.a.c. in the system is less than the analogue input signal, the onverter is made to count up until th d.a.c. output becomes equal to the ana now decreases the change is sensed by the comparator, which makes th counter count down. The comparator a all times sets the counting mode to for the analogue input: once this equality is reached, the logic levels present at the d.a.c. input represent the digitally en

Fig. 15. Practical ramp-type a.-to-d. converter, with up counter.
coded value of the analogue input. In
fact, with a constant analogue input fact, with a constant analogue input
signal the digital output 'dithers' or alternates between the two output states which span the theoretically correct output value.
A bipolar tracking a.-to-d. converter can be made by using offset binary an example of such a system is given in Fig. 16. The operational amplifier conerts the DAC 08 output current into a bipolar output voltage. The comparator in this configuration it presents a high input impedance to the analogue input signal. The type D flip-flop which is connected between the comparator output and the counting mode control
inputs ensures that the comparator completes a transition before the next change in counting mode occurs. The conversion code for the circuit of Fig. 16 is the symmetrical offset-binary alternating analogue input signal is applied the digital output tracks the analogue input provided its rate of change does not exceed the loop slew
rate, which is the maximum rate at rate, which is the maximum rate at
which the d.a.c. output can change. Since this output is incremented one

s.b. at a time:

$\begin{aligned} \text { Ls.b. at a time: } & =f_{c} \times V_{\text {LSB }} \quad \ldots \text { (13) } \\ \text { where } f_{c} & =\text { clock frequency }\end{aligned}$
and $V_{\text {LSB }}=\frac{1}{128} \cdot I_{\text {ref }} \cdot R_{1}$
(From Table 7) Note that the analogue input signal is reconstructed at the output terminal of the operational amplifier in Fig. 16, the loop forcing the output of the opera input signal. The trace in Fig analogue the effect on this output signal of using an alternating input signal whose rate of change exceeds the loop slew rate. A clock frequency of 100 kHz was used ${ }_{16}$ with the component values of Fi
$V_{\text {LSB }}=\frac{1}{128} \cdot \frac{V_{\text {ref }}}{R_{\text {me }}} \cdot R_{1}=\frac{1}{128} \cdot \frac{12}{6} \cdot 3.9$ $=60.9 \mathrm{mV}$
Substitution in Eq. 13 gives
Loop slew rate $=10^{5} \times 60.9 \times 10^{-3}$
$=6090 \mathrm{~V} / \mathrm{s}$
$=.006 \mathrm{~V} / \mu \mathrm{s}$
Examination of the slew-rate-limited measured loop slew in Fig. 17 gives
$9.5=5.94 \times 10^{3} \mathrm{~V} / \mathrm{s}$.
If the counter in a tracking converte is stopped (in Fig. 16 by bringing the 'enable' inputs to logic 1) the system acts as a sample hold with arbitrarily long hold time and no droop. Both ana logue and digital outputs are available.

Successive approximation. This con version method provides a more rapid conversion than the other two feedback techniques. In this type of circuit, the logic performs a series of 'trial' conver
sions, instead of incrementing the to-a. converter one l.s.b. at a time. In the first trial, the control logic applies the $\mathrm{m} . \mathrm{s} . \mathrm{b}$. to the d.-to-a. converter and the analogue output ($1 / 2$ full-scale) is compared with the analogue input
signal by the comparator. If the dac output is less than the analogue input, the m.s.b. is retained, being switched off if the d.a.c. output is greater. The control logic then goes onto apply the next m.s.b. Which is again retained or dis-
carded. The process of trying the addition of successively smaller bits and retaining or discarding them goes on until the l.s.b. is reached. The conver sion is then complete.

Fig. 16. Tracking a.-to-d. converter
using up/down counter mode of 74191

Fig. 18. Sequence of operations in
 successive-approximation converter.

Fig. 17. Bottom trace shows slew-rate limited version of the input (top) to limited version of the input (top) to
circuit of Fig. 16. Clock frequency 100 kHz .

[^1]${ }^{3}$

© Fig. 19. Practical
successive-appro

Fig. 20. Timing diagram of circuit in Fig. 19.
conv A timing diagram for the 2502 register is shown in Fig. 20. Notice that its action
differs slightly from viously in Fig. 18 in that the first clockpulse low-to-high transition at the start of the conversion sets all bits except the
$\mathrm{m} . \mathrm{s} . \mathrm{b}$ to m.s.b. to logic high rather than logic
low. If all bits except the m.s.b. are on the analogue output the m.s.b. are on, full scale -1 1.s.b., rather than $1 / 2$ full scale, as in Fig. 18. If the d.a.c. output is
less than the anal conversion requires that the m.s.b. ($1 / 2$ full scale) be switched on and retained and the input connections to the comparator must be arranged so that a high evel appears at the D input to the register
The action of the s.a.r. is such that it causes the logic state which is present
at the D input to appear at the appropriate position in the output register and at the DO output pin (serial output)
at each low-to-high transition of the at each low-to-high transition of the
clock pulse. At the same time, the level appearing at the output of the next less-significant bit register is set low ready for the next trial.
The 2502 register can equally well be
used with d.a.c. used with d.a.c.s which require a low
logic level to turn on their bit currents. It is simply necessary to interchange the input leads to the comparator so that it presents the current turn-on level to the D input of the register. This action can be investigated by using the \bar{I}_{0} output
line of the DAC 08 (pin 2 instead of pin 4) and interchanging the comparator input leads. The I_{0} analogue output current bits are turned on by a low logic level and the digital output obtained as a result of a conversion should now be
interpreted as logic low, representing a logical 1 . Alternatively, if the positivehigh logic interpretation is retained, the digital output code must be interpreted as complementary binary.
The action of the successivetem of Fig. 19 can be investigated experimentally by observing the waveforms which appear at various circuit points during a conversion. In order to obtain repetitive conversions (at pin 2 of the s.a.r.) is connected to the start conversion input (pin 10 of the s.a.r.) and the signal which appears here is used as the external trigger input to the oscilloscope
To be continued

WRELESS WORLD, JULY 1979

POWWFRTRAM

PS1 Comp 80.280 Based powerful scientific compute Design being published in Wireless World - NOW!

The kit for this outstandingly practical design by John Adams being pubbished in a series of articles in Wireless Worrd really is complete

Value Added Tax not included in prices

 EXPORT ORDERS: No V. VAT.
handing and documenation.
U.K. ORDEES: Subiect to 8% surcharge tor VAT': NO Charge is made to

UK Carriage FRE

POWERTRAN COMPUTERS

(a division of POWERTRAN ELECTRONICS)
PORTWAY INDUSTRIAL ESTATE
ANDOVER ANDOVER HANTS SP10 3NN

This solid state parts counter suves you money
20 ways. For as litile as E6S5 per week

To: Weightdata Ltd., 35 Harford Street, Trowbridge, Wiltshire. BA14 7HL Telex 449128
Telephone (02214) 64461 and ask Karen York for our rapid leaflet service
Please send me details of your money saving machine Please ask your Area Manager to call. Ww $7 / 9 / 9$

Tick as

COMPANY
ADDRESS

CIRCUIT IDEAS

$-\cdots-\cdots-\bar{w} \bar{w}-\overline{031}-\overline{\text { FOR }} \overline{\text { FURTHER }} \overline{\text { DETAIU }}$

Pulse controlled power dissipation

When operating a three-phase stepper motor at clock rates below 20 Hz , a power dissipation problem
example, if each phase is 15Ω and is on for 50 ms when operating from a 28 V supply, each winding will develop $28 / 15 \times 50 \times 10^{-3}=13 W$.
This can be reduced by switching the motor supply on and off in synchronism
with the phase clock as shown. The phase energising voltage is reduced to a holding voltage V_{2} which generates enough torque at the motor pinion until the phase pulse is removed.
Transistor Tr_{1} and a Zener diode switch the series transistor Tr_{2} between
28 V and 6 V 2 . The monostable fires on the negative edge of each phase pulse and R_{2} in parallel with C_{1} causes the
base voltage of $T r_{1}$ to decrease exbase voltage of Tr_{1} to decrease ex-
ponentially after each 1 ms pulse. With this system the dissipation in each phase is reduced to $28 / 15 \times 1.2 \times 10^{-3}$ $=2.24 \mathrm{~W}$.
D. ${ }^{\text {D. }}$ Hill

Cambridge

Phase
pulse

Cascode microphone

 pre-amplifierThis unconventional pre-amplifier offers low noise, wide dynamic range and stability. To obtain a low noise evel it is usual to operate the first voltage. This, however limits its output and requires a second voltage amplifier. With two transistors the open loop gain is high and this requires a large amount of negative feedback. In the cascode
circuit the diodes bias the base of Tr_{2} to circuit the diodes bias the base of Tr_{2} to at about 0.5 V . Transistor Tr_{1} acts as a current amplifier and therefore the noise contribution of Tr_{2} is very small. All of the voltage gain is provided by Tr_{2}
with its collector bootstrapped, and emitter follower Tr_{3} reduces loading on this stage.
Transistor Tr_{1} should be a low noise type and Tr_{3} should have a gain of about
200. With a nominal input of 60 V into 200. With a nominal input of $60 \mu \mathrm{~V}$ into
50Ω, the output is 30 mV into a load of not less than $25 \mathrm{k} \Omega$ and the overload margin is about 45 dB .
R. V. Hartopp

Walden
Essex

Meteosat earth station - 2

V.h.f. receiver and demodulator details

by M. L. Christieson

The first part of this article described the oscillator, mixer and antenna stages for the s.h.f. section of the Meteosat earth the mixer and amplifier circuits used This second part describes the v.h.f. receiver and demodulator and gives further background information relating to the operation of the satellite.

NO REFERENCE has been made so far to the v.h.f. receiver for 137.5 MHz . As shown in the general block diagram, 26 MHz converter and a tunable receiver with an i.f. of 455 kHz . Because there are
many designs for crystal-controlled converters working in this region, particularly for the 144 MHz amateur band, no design is specified here. However, some converters are a little noisy, and a good preamp should be used after the to be determined mainly by the antenna preamp. Fig. 9 shows the schematic diagram of the preamp used, although there is nothing special about it. The
usual screening precautions should be taken in the construction.
The final receiver is a modified com-
mercial type in the prototype system.
The major change is the 25 kHz i.f. bandwidth which is much wider than a i.f. was chosen to give a large output

Fig. 10. F.m. demodulator and frequency-compressive feedback circuits.

amplifiers. These are arranged to work on a single supply to make interfacing with the other equipment easier. The output from the demodulator is the carrier.
Several methods have been described for amplitude demodulation of the subcarrier. This system uses the sample-and-hold method described in a pre-
vious design for A.P.T. ${ }^{3}$. To obtain high quality pictures some signal processing is necessary. This is most easily achieved before the sample and hold stage and also means that a.c. coupling modulation characteristics are different
according to the type of picture being radiated. Two switched positions are
available on the contrast expander, one available on the contrast expander, one
for visual, and one for infrared and water vapour. After expansion the signal is passed to a variable gain amplifier for setting the required contrast.
Fig.
Fig. 11 shows the circuit diagram of the contrast expander and amplifier and includes expected waveforms. The presets controlling the diode bias must be adjusted to give equal positive and negative peaks on the output
waveform, while maintaining the required centre dead-band. The video bandwidth, as shown in the modulation

WIRELESS WORLD, JULY 1979 characteristics, is approaching the subcarrier frequency. On an initial test
only positive peaks of the sub-carrier were sampled. A modification was incorporated such that both positive and negative peaks were sampled, resulting in better picture definition due to the
increased sampling rate. The circuit shown in Fig. 12 is a precision full-wave rectifier; with a preset to ensure the minimum of modification to the deadband characteristic. These should be set in conjunction with the diode bias preheights derived from both positive and negative half cycles of the sub-carrier at all input amplitudes. For this stage, a

11. Circuit diagram of contrast expander and amplifier, showing expected waveforms. The presets controlling the diode bias are adjusted to give equal positive and negative peaks on the output waveform.

Fig. 12. Precision full-wave rectifier circuit.

WRELESS WORLD JULY 1979
single-ended 24 V supply is used because signal is applied directly to the sampling stage, noticeable 'whiting out' occurs o ictures when the contrast is set hig nough to display geographical feapress the white portion of the signal. Various methods were tried but the most successful was the circuit shown in Fig. 12, which has the advantage of a variable compression characteristic sion transistor should be just switched off by means of the diode chain voltage drop. The output then follows the input for small signal levels quite closely. As the signal becomes larger, the compres-
sion transistor switches on and forms the lower end of a potential divider and this reduces the output level proportionally to the input signal as set by the preset. Sufficient compression can be applied to leave some variation in cloud
(peak white) while expanding the grey land areas. This applies to the visual pictures and to a lesser extent to the other two types. The compressor is left in for all pictures. The output, which is
d.c. restored as the signal is not symd.c. restored as the signal is not sym-
metrical, is applied to the sample-and-hold stage in Fig. 12. This is a $\operatorname{modifified~}^{3}$ version of the previous design ${ }^{3}$.

The sample pulse generator appears in Fig. 13. The signal is derived from the amplified sub-carrier output in the expander. It is limited and filtered to ensure solid locking at very low black levels when the signal to noise ratio is
worst. The preset in the filter adjusts the phase shift and must be set such that the sample pulses coincide with the sub-carrier peaks. A phase-lock loop is

Visible picture taken on May 1, 1979 using the author's new seven-foot diameter dish antenna. Area shown is only a portion of the area covered by the satellite camera. See "Modifications" on page 97.

Fig. 13. Circuit diagram of the sample pulse generator
95.
locked to the filtered output and the pulses required. These pulses are then squared up by the succeeding stages and applied to the sample-and-hold deector. The output from the detector is a olarity) and is taken via an emitter polarity)
follower.
Picture printing technique
There are several ways to produce a hard copy image from the video output. struction have been described fully in previous articles ${ }^{3,}, 4,5$. They employ rotating drums and oscilloscope tube photography and are both capable of producing excellent results. The video
output must of course be interfaced with the selected system. The prototype described here uses a Mufax wet-paper facsimile machine, converted for the correct speed, and a rebuilt picturetages that pictures can be inspected while they are being printed, and the images produced are somewhat larger than those produced by the photographic processes. Whichever method is
used, the phasing signal and line speed will have to be set to suit the Meteosat A.P.T. The picture has an aspect ratio of $1: 1$ or an index of cooperation of 267. The entire video chain is finally adjusted on test
pleasing pictures.

Satellite operation characteristics Although Meteosat runs a daily schedule, due to the experimental nature of the system at this time, it is subject to change and occasional interruptions.
Each hour is divided into four-minute periods, the first starting at 2 minutes past the hour and the last starting at 58 minutes past the hour. A particular picture will occupy one of these slots
and will start at the slot time and end 30 seconds before the next slot time. The carrier is not radiated when no picture is scheduled. Pictures in digital form con-

ecognized by the apparently unmodu lated carrier and pulsed sidebands. At ertain times of the day a test pattern radiated, and at other are transmitted containing operational information such as schedule changes. A greater number of pictures are transmitted during daylight hours when the visual images are usually sent once a day enabling a composite picture of the world to be constructed. Pictures of the European area are sent more often Regular sets or nare are sent to enable a composite world picture to be constructed.
Exact schedule information can be obtained from the European Space Agency at the follorions Manager,
E.S.O.C. - M.D.M.D. (MET), Rober Bosch Strasse 5, 61 Darmstadt, W. Ger many. Although the system described is for the European Meteosat, there is no reason why the frequency cannot be changed slightly to receive other meteorological satellites operating in S
band over other parts of the world, the band over other parts of the world, the
American GOES for example. It is inAmerican that a series of five satellites will provide pictures of all parts of the world in the next few years, Meteosat and GOES being the first.

Acknowledgements

Acknowiedgements would like to express my thanks to Mr J. Morgan, European Space Agency Met. Operations Manager, Darmstad formation, and his detailed replies to The local oscillator coils L to 0 L a and the relays RL , and
in Fig. 7.

Coil	Turns	Dia	Lenoth	Wireswg	Tapping details
L	6	0.25	0.5	22	34 trom collector
L_{2}	8	0.25	0.5	22	7 t
L3	3	0.4	0.5	18	2 t
L_{4}	3	0.4	0.5	18	Centre tap
Ls	Copper plate 14SWG. 1-2 long, 0.25 wide tapped at 0.6 and 1.0 trom cold end				
L_{6}	1	\|0.4	- 0.2	\| 18	
L7	Copper plate 1 ASWG			0.810 ong 0.4 wide	
L8	-	-	*"	0.6	\cdots
L9	-	-	-	-	" .
$\left.\right\|_{\mathrm{RL}} ^{\mathrm{KL}}$	Dual in line reed relays, energised for channel selection.				

The mixer coils $L_{\text {, to }} L_{3}$, shown in Fig. 4 , are
fabricated on $1 / 16 E 10$ glass-fibre board, with

$\left.L_{1}\right\} 1$ turn, 36 SWG wire $1 / 16$ diameter r.f. $\left.L_{2}\right\}$ ichokes.

MRELESS WORLD, JULY 1979 G3RND for initial to Mr J. Berden, Meteosat; to my colleagues at Feedback nstruments Ltd for their encouragement during the project, and to Mr A. P. the antenna dish.

Modifications
Since the author wrote this article he Meteosat station. These hav significantly improved the picture quality but have unfortunately also increased the component cost. The phase-lock-loop circuit in Fig. 10 has been changed to incorporate a Plessey linerarity, and thus the performance of the frequency-compressive feedback circuit. In order to further reduce the signal noise, which produces faint 'smudges' on the picture, he has antenna with one measuring seven feet in diameter and replaced the dipole antenna with a waveguide-fed horn antenna. A picture produced using the
modified station is shown This picture demonstrates the wide coverage area which Meteosat can provide, because of its high 'orbit' height.

References

2. Tant, M. J., Automatic characterisation of Instrumentation, Spring 1978.
3. Kennedy, G. R., Wearconi 3. Kennedy, G. R., Weather satellite ground
station, Wireless World Nov 1974 gro station, Wireless World, Nov. 1974 to Jan.
1975, Weather satellite picture facsimile 1975, Weather satellite picture facsimile
machine, Wireless World, Dec. 1976 to March 1977.
4. Sollo 4. Sollom, Rev. P. W., Just look at the
weather, Radio Communication, Nov, to Dec. weather, Radio Communication, Nov. to Dec.
5. 5. Specialized communications techniques, American Radio Relay League, p83. American Radio Relay League, p83

The converter (also shown in schematic form in Fig. 8, Part 1). Picture clearly shows the mixer and preamplifier (far right) and the oscillator and tripler stages (left). The prototype is not fitted
with covers. with cover

Four-foot diameter dish antenna used by author on his Meteosat earth station. Dipole and reflector can just be seen mounted at the dish focus.

A composite infrared picture of hemisphere
received during September 1978 on the author's four-foot
diameter dish antenna.
 seen mounted at the dish focus.

Notes on Part 1.
The polarities of the two MBD102 diodes in Fig. 8 should be as per Fig. 4. Ref. 2 on page 61
should read Ref. 1.

Mike Christieson is 24 and is currently working. as a development engineer for Feedback Instruments Ltd. Prior to this he worked in the broad-
casting field and served his apprenticeship with the broadcasting division of the Foreign and Commonwealth Office. He then spent a short period of time in the U\$A and modifying and commissioning transmitters installed at sites in Iran - the Afghanistan border - and also in Venezuela and Nigeria. Mike is a
radio amateur with the call sign radio a
G8FCD.

| L_{3} | $\begin{array}{l}6 \\ 3 / 8 \text { turns, long }\end{array}$ |
| :--- | :--- | 18 SWG wire $3 / 16$ diameter

NEW PRODUCTS

WRELESS WORLD, JULY 1979

(medium wave) and f.m. trans- missions. Clearly, this receiver can also be used to check the operation of model control transmitters. The unit is portable and weighs 0.45 kg (1lb) and is powered by a single 9 V battery. It has a built-in 76 mm loudspeaker and a jack is provided for earpiece use. The price is $£ 17.95$ including v.a.t. and post and packing. Chromatronics, Coachworks House, River Way, Har low, Essex. WW 305 Home computer The introduction of the Nascom 2 microcomputer marks a further development of this company's popular Nascom 1 home compopular Nascom 1 home com- puter. The more powerful version also uses the Z80 processor and is equipped with a new 2 K monitor known as Nas-Sys 1 , a 1 K video r.a.m., a standard 8 K microsoft Basic r.o.m., and an 8 K static on a single $305 \times 203 \mathrm{~mm}$ p.c.b. and all of the bus lines are compatible with the existing Nasbus. Serial operation for the on-board cassette and teleprinter inter- faces is handled by a u.a.r.t. whose input and output are independently switchable. Nascom 2 also incorporates an uncommitted parallel i / o which gives 16 programmable lines, addressable as 2×8-bit ports. A 2 K r.o.m. socket is provided for a graphics option which is software selectable and is based on a 96×48 point grid. The basic Nascom 2 is priced at about $£ 295+$ v.a.t. Nascom Microcomputers Ltd., 121 High Street, Berkhamsted, Herts. WW 306 Frequency synthesiser Covering a frequency range of 0.1 Hz to 16 MHz with $51 / 2$ digit resolution, the Lyons Instruthesiser instrument (SI-102) and a basic module (SM-102) are available at "a fraction of the cost square wave, with a sine wave converter available as a further module to provide low and square) output over the range 0.001 Hz to 160 kHz . This amounts to $1 / 100$ of the synthesapplications of the units include testing of audio and power circuits, r.f. transmitters and receivers, filters, psychological and acoustic studies etc. A particular application for the sine wave converter is variable mains frequency drive, where the syn- thesiser is set in the region of thesiser is set in the region of $\mathbf{k H z}$, so providing a highly stable output variable in steps as fine as 10 millihertz or even down	WW 306 WW 307 WW 308 to 1 millihertz The SI-102 is a self-contained instrument priced at $£ 425$ while the SM-102 module is contained on a $110 \times$ 165 mm card priced at $£ 295$. Some lower cost $4 \frac{1}{2}$ digit resolution models are also available and the SM-010 sine wave converter costs $£ 180$. Lyons Instruments, Hoddesdon, Herts. WW 307 Printed circuit breadboard The act of converting a circuit design to the final printed board presents a number of problems and in most cases the practical results differ from the theoretical expectations. The Wainwright Mini-mount is a novel breadboarding system which consists	of 23 different small printed circuit elements with pressure sensitive adhesive on one side and an etched pattern of solder pads on the other. Components are soldered to the pads, the backing is removed and the circuit element is placed in the morface. In this way, a layout which very closely resembles the final version can be obtained and circuit performance quickly es- timated. Tinned, copper-clad boards are available as a groundplane base and stray capacitance to ground is claimed to be very small - comparable with that of a double-sided printed circuit. An advantage of the method is that each mini-mount can be used ponents for re-use and in addition to easing prototyping problems the system can be used in the electronics hobby and educational fields. Wessex Electronics, 114-116 North Street, Downend, Bristol BS16 5SE. WW 308 Cordless soldering iron Service engineers literally "working in the field" should find the new Cordless gas-operated solreasonable temporary substitute for the heat generally available from the mains. The iron operates for about two hours from a standard lighter fuel pressure can, and 80 watts equivalent heat is generated safely by a no-flame catalyser combustion process. The iron is self-igniting, temperature-controlled and is designed in such a way that it will not touch any surface on which it is placed at rest. Kam Circuits Ltd., Porte Mash Road, Calne, Wilts. WW 309 Schottky diode switch Switching speeds of better than 2ns and a bandwidth up to 500 MHz are features of a new solid state electronic switch recently introduced by Hatfield InstruType 2551 and is a single throw (s.p.s.t.) Schottky diode switch designed for remote switching applications. The specified ${ }^{\text {operating temperature range is }}$ ratio is typically 80 dB at midband. The unit is packaged in a standard relay header enclosure and is hermetically sealed as well tromagnetic interference. Hatfield Instruments Ltd., Burrington Way, Plymouth, Devon PL5 3LZ. WW 310

Pub crawl

ene the one about he motorist's insurance claim which
stated quite categorically that his ca had been struck in the rear by a stationary tree. Well, it might not be as funny as all that, because one or two of thes mobile plants have been discovered land of the free. Free? Traffic cops over there seem to have been a bit free with their traffic radar, it appears, becaus hey have been observing trees doing loitering about at a contemptible 26 mile/h.
This had led to a lot of aggrieved drivers claiming to have been mistaken the consternation of police and judges. The standard type of radar used in the States is of the hand-held variety, aimed down the road, and while these seem to be reasonably accurate instruments, , common vew is that they can also be affected by electrical installations and large, stationary objects like buildings. The Home Office here point out that the Americans use 100 mW of transmitter power, which is ten times as much as
that used over here, and think that this may have something to do with the somewhat extravagant claims for mobility in otherwise unexceptional inanimates.
British police tend to use the Marconi Peta, which is an across-the-road type,
but the American Muniquip down-theroad instrument is also in use in a reduced-power form. Individual force decide which equipment to use in thei
own areas.

Tit for tat

Those readers of this journal who pause briefly on the preceding two or three pages to their na reasonable mixture of new components, instruments and tools, selected in a way we think will interest them.
We are not noticeably short of material for the new products pages, round twenty press handouts per day or perhaps four hundred a month which can be considered for inclusion and any amount which are unsuitable. Those have to be screened and selected down been re-written, with an inevitable wastage of 95%.
All this is really self-defence. It is intended as a blanket reply to hasn't been selected and who ring up to ask why we haven't written a piece about their new breakthrough in grom met design, because it ought to hav World Selection of new products is

solely on the basis of interest or enligh tenment and has nothing whatever to do with who prepare the product pages peop't even see the advertisements before they are printed, or have any knowledge of what ads. are to be inserted. There, that' plain en a few les haps weuts which describe the new bit of gear and then go on to say "I feel sure this will interest your readers and by the way, please send you id relected the company will advertise.

Stray pick-up

Confession, so they say, is good for the soul. Well, my soul can do with all the help it can get, so here goes - I'm one of those people who peer over your you're reading. There! I feel better already. I also listen to snatches of conversa
tion and, although it has been remarked that eavesdroppers never hear anything to their credit, they do have the consoation that what they do heectly ordinary, spirit-dulling train journey almost worthwhile. Either electronics is a more widely recognised art form than I had supposed, or the majority oarly every evening, but whatever the reason there's usually some conversation on the subject in the 17:33 to Epsom.
It's a pity they won't speak up a bit more though, because from the bits ating. The man I heard to declare "It uses op-amps that glow" clearly had something of importance to dissemin ate and if only I hadn't trodienent, thereby losing the rest of his dissertation, we might all be much wiser today. There are moments of pathos, of course. One's heart goes outho it example, "to the poor fixed to the wall" .. Now, I'm not too clear on the precise method adopted here, neither am I cer-
tain whether the unfortunate was still an integral part of his ear at the time, but the whole business struck me, I remember, as hardly the sort of thing
one would normally wish to broadcast. one would normally learn quite a lot, in a
One can actual random way, from the isolated little moments of revelation. I now know, for instance, that ". a.m. is yer ante meridian, ennit Well, of course, so is, and if the propounder of this theory
hadn't been looking for Capital Radio on the medium-wave band at the time, would have been in absolute accord with him. I suppos the afternoons.

Jumbo radio

If any visitor to Windsor Safari Park has been surprised at the sight of a warden rifle at the trail, gaxpoping He has quite possibly just picked up a message on his personal radio, advising him that he is clear to take off on Runway 28 Left. They have been having problems a
Windsor, it seems, with transmissions from Heathrow, which is only eight miles away. So much so that they are having a new Burndept system with one squelch to get rid of the intrusions. One wonders whether the inter Many pilots of large airlines would want to check the accuracy of an instruction to switch on their headlights and wait down and would find little to argue with in an exhortation to refrain from winding their windows down, particularly when lions are with twenty-five yards.

Hot news

Morton will remember with affection his life's work - the compilation of the list of Huntingdonshire Cabmen, published with becoming modesty under the nom-de-plare the lack of a sequel to this absorbing chronicle of stormy, home-counties passion will be overjoyed to hear of a new work by a yet unrecognised author Wire Anemometry - said to be the most complete work of its kind in the world. The publishers feel that this bibliography may well be unique, and define the readership as being "anyon I thin it very likely that it is unit And it will be extremely difficult to surpass this feat, although the forth coming guide to Victorian Manhole Covers in Greater a close second.
The bibliog
quarterly, obtainable from Biral, P.O Box 2, Portishead, Bristol, whose forgiveness I now ask

On 20 September 1979 at the World Book Fair on Telecommunications and Electronics, Granta Technical Editions will publish Frequency Engineering in Mobile Radio Bands. Written by William Pannell, Senior Systems Consultant for Pye Telecommunications, this guide has been compiled to highlight the essential
requirements of frequency planning. With over 200 detailed equirements of frequency planning. With over 200 detailed diagrams, the book will be of particular assistance where the initial
stage of allocating bands and channels are being considered and stage of allocating bands and channels are being considered and methods are suggested to minimise the effort needed.

The book is divided into two sections, the first dealing with the general
procedures of frequency planning. To enable greater appreciation of some procedures of frequency planning. To enable greater appreciation of some aspects of the first part of the book, the second section is devoted to a number of
appendices which consist mainly of relevant material and unublished papers. appendices which consist mainly of relevant material and unpublished papers'
plus 'in-house' engineering notes from Pye Telecommunications compiled by
the author over a number the author over a number of years.

William Pannell has 47 years of experience in the business of mobile radio having joined Pye Telecom in 1932 to work in the research laboratories. After working on domestic radio and communications equipment, he started the
Systems Department in 1957 . From 1965 he was the Technical Manager fo Overseas Marketing and was closely involved in projects which included a VHF multiplex link system for aeronautical use in all major islands of the Caribbean; a the United Arab Republic and a security system in Rio de Janeiro, Brazil. In March 1979 the author was made a Fellow of the Radio Club of America.

For professionals everywhere, for radio engineers at stations, labs and workshops throughout we world, for technical libraries, this book is an essential work of reference and information.

Trimimed size: $240 \times 180 \mathrm{~mm}$, 448 pages including 216 detailed drawings.
Granta Technicai Editions, as a special offer only available to readers of Wireless World, present this
volume at a discounted price of $£ 19.95$ (including post and package) for orders received before the publishing date of 20 September, 1979 (price thereater $£ 25.00$). Simply fill in the order below to
reserve your copy.

d

RELESS WORLD, JULY 1979
 103
 Simply ahead!

HIGH PERFORMANCE MODULAR UNITS BACKED BY NO-QUIBBLE 5YEAR GUARANTEE

$$
\text { TEST CASSETTE TC1 } 1
$$

Special Hart Copyright esit tape makes it easy to set up va level. hear arimuth an

tape speed, without test instuments. Suitable for any cassette recorder. Complete | tape |
| :--- |
| with instructions $£ 2.50$ inc V AT. |

VFL 910 Verrical Front Loading Cassetre Mechanism. Features include: Tape counter, record, interlock, FG servo drive motor, full auto-stop pause control, Mutite
switch, oil damped cassette door, 09\% W\&F, fitted with HS15 head. Limited switch,
supplies. $£ 31.999$.
OPTIONAL EXTRAS. Set of sis knobs. $£ 1.49$
Auto.stop reed and mount ing kit $£ 0.90$.
PLASTIC ESCUTCHEON
Suitable for CRV and CTL 4 echanisms. As used on 0
with mounting screws $£ 1.99$ plus VAT:
Alarge range of cassette heads for domestic, industrial and audio visual purposes is
availabe trom us. The very best stereo head that we can find is our HS 15 Sendust Alloy Super Head. This has an even ben fritite types this excellent high frequency

LENCO CASSETTE MECHANISMS
We hold stocks of a range of Lenco tape transports for all sess, we can also supply

CASSETTES

Sur raboratory tests on recorders made us realise how important the choice of
assete is. W. Wow and fluter is obviously affected by the quality of the housing but the

C90 80p
C 6060 p

0 35p Complete in library case. Suitable for Mirro Programming.
ALL UK ORDERS ARE POST FREE
HART ELECTRONICS
Penylan Mill, Oswestry, Salop Personal callers are always welcome
but please note we are closed all day saurday

E

When vou get vour test equipment serviced or maintained by
the London Instrument Repair centreve.vo get the same top
auaaity work that made the instrument in the first place-and quiality work that made the instrument in the first place-
backed bv a full year's wararanty too.

ww - 041 FOR FURTHER DETAILS

NRDC-AMBISONIC UHJ

SURROUND SOUND DECODER

 The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 3 input signals and 4 or 6
selections T.ee decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 3 input signa
output signals are provided in this most versatile unit. Complete with mains power supply, wooden cabinet, panel, knobs, etc.

Complete kit, including licence fee £49.50 + VAT
or ready built and tested $£ 67.50$ + VAT

NEW S5050A STEREO AMP

50 watts rms
Tone cancel switch. 2 tape monitor switches
Complete kit only $£ 63.90$ + VAT.

Wireless World Dolby ${ }^{\text {® }}$ noise reducer

Featuring:

- switching for both encoding (low-level h.f. compression) and decoding
- a switchable $f . m$. stereo multiplex and bias filter
provision for decoding Dolby ft
no equipment needed for alignment , radio transmissions (as in US
- suitabiity for both open-reel a nd cassette tape machines.
o check tape switch for encoded monitoring in three-head m
machines.
Typical performance
 Cliping levev 16.5 SB above D
at 10% third harmonic content) Harmonic distortion 0.1% at Dolby level typically
0.50% over most of band, 元ing to a maximum of
0.12%

Also available ready built and tested Signalto-noise ratio: $75 d \mathrm{~dB}$ (20 Hz to 20 kHz , signal
at Dolby level) at Monitor output Calibration tapes are available for open-reel use and for cassette (specify which) Dynamic Range $>90 \mathrm{db}$
30 mV sensitivity.
Complete Kit PRICE: $£ 43.90$ + VAT

Single channel plug-in Doiby ${ }^{\text {© }} 0$ ($)$ PROCESSOR BOARDS $(92 \times 87 \mathrm{~mm})$ with gold plated contacts are available with
all components
ingle channel boa
Single channel board with selected fet
Price $£ 2.75$ + VAT*
Gold Plated edge connecto
FETs $\mathbf{6 5 p}$ each + VAT, $\mathbf{1 1 0 p}+$ VAT for two, $\mathbf{£ 2 . 1 0}+$ VAT for four
Please add VAT @ $12 \frac{1}{2} \%$ unless marked thus*, when 8% applies (or current rates)
We guarantee full after-sales technicai and servicing facilities on all our kits, have you checked that these services are available from other suppliers?

Price $£ 1.75+V A T$

Please send SAE for complete lists and specifications Portwood Industrial Estate, Church Gresley, Burton-on-Trent, Staffs DE11 9PT
Burton-on-Trent (0283) 215432 Telex 377106.

S-2020TA STEREO TUNER / AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button
FM Varicap Stereo Tuner combined with a 24W r.m.s. per channel Stereo
Amplifier.

Brief Spec. Amplifier Low field Toroidal transformer, Mag, input, Tape In/Out facility (for noise reduction unit etc.), THD less than 0.1% at 20 W into 8 ohms. Power on/off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic IF, $88-104 \overline{\mathrm{M} H z}$. 30 dB mono $\mathrm{S} / \mathrm{N} @ \operatorname{@j} .2 \mu \mathrm{~V}$. THD 0.3%. Prededecoder thirdy fiter stereo indicators. Tuning range Nelson-Jones Mk. 2 Stereo FM Tuner Kit. Price: $\mathbf{£ 6 9 . 9 5}+$ VAT.

NELSON-JONES MK. I STEREO FM TUNER KIT
A very high performance tuner
with dual gate MOSFET RF and Mixer front end, triple gang
varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief Spec. Tuning range $88-104 \mathrm{MHz} 20 \mathrm{~dB}$ mono quieting @ $0.75 \mu \mathrm{~V}$. Image rejection -70 dB . IF rejection quieting $@$ - 85 dB . THD typically 0.4%.
IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with choice of stereo decoders.
Compare this spec. with tuners costing twice the price.
Mono $£ 36.40$ + VAT $\because 44.20$ + VAT

Sens. 30dB S/N mono @ $1.2 \mu \mathrm{~V}$
HD typically 0.3%
uning range $88-104 \mathrm{MHz}$
ED sig. strength and stereo indicator
STEREO MODULE TUNER KIT
A low-cost Stereo Tuner based or the 3302 FET RF module A lowuiring no alignment. The IF on the 3302 FET RF module requiring no alignment. The IF comprises a ceramic
filter and high-performance IC Variable INTERSTATION MUTE. PLL stereo decoder IC. Pre-decoder 'birdy' filter Push-button tuning

PRICE: Stereo $£ 33.95$ + VAT

S-2020A AMPLIFIER KIT Developed in our laboratories from the highly successful "TEXAN" design. PC mounting potentiometers, witches, sockets and fuses are used for ease of assembly and to minimize wiring Power 'on/off' FET transient protection.

[^2]INTEGREX LTD.

BASIC NELSON-JONES TUNER KIT $£ 15.70$ + VAT BASIC MODULE TUNER KIT (stereo) £18.50 + VAT PUSH-BUTTON UNIT
$£ 4.47$ + VAT
$\mathbf{£ 6 . 0 0}+$ VAT $\mathbf{£ 8 . 8 0}+$ VAT

$200+200$ watt AMPLIFIER
 As featured in Electronics Today Internationa

400W rms continuous --800W peak! 0.03 \% THD at FULL power!

PLUS all the following features too!
\& Each channal totally independont with its own stabilised power supply driven by custom designed
ToRoolipal transtomerst

IN SOUND INTERNATIONAL DEC 78
TRANSCENDENT 2000 SINGLE BOARD SYNTHESIIER

COMPLETE KIT ONLY
$£ 172.00$ + VATI

CHROMATHEQUE 5000 5-channel lighting effects system

MPA200 100W MIXER/AMMPLIFIER

More scope for your money.

 he coded items mentioned in the Editorial or Advertisement pages f this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to he manufacturers concerned and you can expect to hear from them direct in due course. Cards posted rom abroad require a stamp. These Service Cards are valid for ix months from the date of publication.Please Use Capital Letters
If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to this page. You may also apply address is shown below.

OVERSEAS SUBSCRIPTION AGENTS

The new Scopex 4D-10B.

The 4D-1OB is a great newcomer to the Scopex range. Like all Scopex products it's extremely reliable, engineere o the highest standards and remarkably easy to use. significant 40% better than most and there are important new features including:-
XY facility with fully matched sensitivities from integrated circuitry for extra reliability.

- Z modulation for brightening or dimming the trace
lus full 10 MHz scan over the complete screen area race locate and IV field trigger
Finally there's free delivery in the UK mainland
and the price - $£ 188$ excluding VAI.
Also available, standard rack mount model

Wireless World:

Subscription Order Form
To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager,

PC Business Press
Oakfield House, Perrymount Road,
Haywards Heath, Sussex RH16 3DH, England

WRELESS WORLD, JULY 1979

MAIL ORDER PROTECTION

 SCHEME(Limited Liability)

DPS-1

Introducing the DPS. 1 the full IEEE S100 bus computer system from
Ithaca Intersystems - the $\mathbf{S} 100$ experts. FOR EDUCATION, INDUSTRY, RESEARCH and all professional uses,
including hardware and software development, low cost OEM including, hardware and software
systems, teaching applications etc.

> MICRO techPUTER USing
> $\begin{aligned} & \text { lidiculous MICRO price } \\ & \text { The front panel with a } \\ & \text {. }\end{aligned}$
> $\begin{aligned} & \text { backplane and power supply } \\ & \text { accepts } \mathrm{S} 100 \text { bus boards from }\end{aligned}$
tures!
Just FRONT PANEL (we won't ask you to debug our hardware, but we
will will give you the tools to debug yours!). Includes breakpoints, write or
jump to any location, single or slow step 0.1 to 100 IPS) s.op data byte or address, scope trigger on breakposint, repeat in
(e.g. NoP's) and many other hardware diagnostic facilities.
$\star 25$ Amp power supplies (all rails seperately fused)
100 mit
soelulation

* Suitable for $6800,6502,8080,8085,780,7804$

The DPS.1 comes as a mainframe with front panel, motherboard and
power supply. The system is truly modular allowing the up the system he requires in his own tim

IEEE S100 bus.
Just add S100 Memory Boards - $\$ 100$ cpu board - $\$ 100$ disk con-
troller boards -- S100 EPROM boards - $\$ 100$ disk boards etc. All Ithaca Intersystems OEM products including $K 2$ disk operating
system and PASCALZ on $8^{\prime \prime}$ floppy drives will run in the DPS-1. DPS. 1 with S100 $\mathbf{z 8 0}$ cpu board $£ 695$ DPS. 1 less S100 880 cpu board $£ 645$

00 boards

8K Static RAM board
Z80 cpu board (2 MHZ) 280 cpu board (4 MHZ)
277812716 EPOM board
Prototype board
Video display board (64x 16, 128U/L Ascii)
New products from lthaca audio
Disk controller (up to 4 single or
Disk contriner (dip
double sided drives)
double sided drives)
110 board (serial and parallel outputs)
S100 tront panel (as used in DPSU1)

Software for your S100 system K2 operating system
8^{8} " filoppy disk $\star T E D-52$ com - distributed on Shugat compatible File and directory handoler. \star ASMBLE-full 2802 pass assembler

PASCALIZ The new language for Micros $£ 131.25$ Runs under K2 operating system.
$\star \quad$ Compiler that produces assembler code - NO NED pres direct piete with Macero aseter. \star Comes com-
binary object modules - small and faces \star Modules are reentrant and can be put.
into ROM. © IMBED, TRACE and ERROR debug facilities.
\star Full 2 pass Macro Assero assembler $£ 37.50$

UP-GRADE KITS

memory is not much fun if you $\begin{aligned} & \text { with concise step by step } \\ & \text { directions and diagrams }\end{aligned}$ memory is not much fun if you directions and diagra dont get everythen

 expansion was our first Sim
Up-Grade Now there are two more - for owners of Apple 1 I** and Exidy Sorcerer $* *$
computers. Each kit is 100%
guaranteed - if a a part tever , guaranteed - if a part ever
tails, we replace it $F R E E$. Your
Ials, lthaca audio dealer nas them
in stock, only Eg9. Now you in stock, only Eg9. Now you
can afford to add high quality,
high density can afford to add high quality,
hing density memory to our
system for remarkably litte -
far less than you would expect system for remarkably little -
far less than you would expect
to pay from Radio Shack, to pays from Radio hshack,
Apple, or Exidy directly. Apiese or Exidy directly.
These Simple Up-Grades a
thaca Audio's first step addiang Aodio's firstststep in
reliability to your coity and
lower coster at reliability to your computer at
lower cost. Other Up-Grades
are on the way to your dealer

 d
)

CONTACT THESE DEALERS
NEWBEAR COMPUTING STORE - Telephone: Newbury (0635) 30505 AIRAMCO - Telephone: 029457755 Telex: 779808 SIRTON PRODUCTS - Telephone: 01-660 5617 COMPSHOP LTD - Telephone: $01-4412922$ Telex: 298755
 $\begin{array}{ll}\text { (formerly ITHACA AUOIO of New York) } & \begin{array}{l}\text { EUROPEAN SALES HEADQUARTERS } \\ 58 \\ \text { Crouch Hall Road, London N8 8HG. UK. Telephone: 01-341 } 2447 \text { Telex: } 299568\end{array}\end{array}$

Electronic BrokersNo.l in Second User

49/53Pancras RoadLondonNW12QB Tel: 01-837 7781. Telex 29869

Refurbishing

Unless otherwise stated all equipment Unless otherwise stated all equipm offered in the Electronic Brokers. 4 and page advertisement is refurbished in the case of Test Equipment guaranteed for 12 months; computer peripherals for 3 months.

Hours of Business: 9 a.m. - 5 p.m., Mon.-Fri. Closed lunch 1-2 p.m.

A copy of our trading conditions is available on request.

SEND FOR AUTUMN '79 "TESTMEX ISSUE" CATALOGUE
Containing latest information on our stock of
Equioment

Add 8\% VAT to all prices

COSSOR

TEKTRONIX
Add 8% VAT 8 all pices

HEWLETT PACKARD

 c Curront now price

Electronic BrokersNo. 1 in Second User
 GENERAL RADIO Immitance Bridge 1607 E £750 MARCONI INSTS. In Situ Univ Bridge TF270 | R.F. Power Amplifier 500 L _3i5 |
| :--- | gertsch
 Complex Ratio Bridge CR1B 1 E E600 GENERAL RADIO Vibration Analyser 19 HEWLETT PACKARD 310A Wave Analyser 1 kHz - 1.5 MHz $£ 1200$ True R.M.S. Voltmeter 3400A MARCONIINSTRUMENTS A.F. Transmission Test S.t. TF233 S.F. Transmission Test TF2343 Deviation Meter TF7910 E400 Elig5 Deviation M eter Electronic Voltmeters TF 2604 2 Sine Sq. Pulse \& Bar Generator TF 2905 Grey Scale Generator TF 2909
 PHILLPS Pulse Gen
 PulLe Generator PM5712 Pulse Generator PM5 P515 \ldots Wow \& Flutter PM 6307 $£ 275$
 See us on stand C3 at "Testmex '79" at WEMBLEY CONFERENCE CENTRE, JUNE 19, 21 and 22.

 \qquad

 JP $16 \mathrm{~K}, \ldots .$. COMPUTER PERIPHERALS ICEEE ET50
 SPECIAL PURCHASE SUURPTUUS KEEEBEDARDS

 Electronic Brokers

WIRELESS WORLD, JULY 1979

OHIO SCIENTIFIC COMPUTERS from MUTEK

Challenger IIP Series

Ultra high performance BUS oriented microcomputers for
personal, educational, research and small business use C2.4P
C2-8P - The professional portable
Therl
 C2-8P Dersonal users, etc. C2-8P Dual Disk - $\begin{gathered}\text { Most cost effective small } \\ \text { business system }\end{gathered}$ Extra 4K RAM - £39. 8K RAM Board (expandable to $24 \mathrm{~K}!$! $£ 125$ RAM
Challenger III The Ultimate in Small Computers The unique three processor system for demanding business
ducation, research and industrial development application C3-S1 - World's most popular $8^{\prime \prime}$ floppy based 32 K RAM $£ 2450$

For Communi
Trio testgear.

ALL MACHINES are modified by us to suit British mains voltage and frequency, and, where TV output is used (C2 series) to be compatible with British TV standard (connection via aerial socket).
C2 SERIES: 32 line by 64 character video. Program and data storage on cassette or disc. Full 53 key keyboard. Programmable D/S converter and tone generator interfaces now included at no extra cost. Also included AC remote starter set. Supplied with full documentation and circuit diagrams.

for further details	MUTEK	QUARRY HILL	
send SAE to		BOX, WILTS.	Tel: Corsham (0249) 71

THEVALVEAND TUEJ= GPECALISTS

Ham Bands with $1.5-30 \mathrm{MHz}$ receive with built-in 150 MHz requency counter plus option of $\mathrm{O-1.5} \mathrm{M} \mathrm{MHz}$ receive and /or any

RADIO SHACK LTD

$=-2$
 drake *SALES * SERVIICE

RADIO SHACK LTD

188 BROADHURST GARDENS, LONDON NW6 3AY Cablos: Realio Shack, London, NW6. Tolox: 23718

Co3 103

we have a
cords
wide range

FUTURE FILM DEVELOPMENTS
36/38 Lexington Street, London WIR 3HR Telephone 01-437 1892/3 • Telex 21624 ALOFFD G

WW - 035 FOR FURTHER DETAILS

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME
Full range àailable to replace $\overline{1} .5$ volt dry ceills and 9 volt PP type
batteries SAE for lists and prices. $£ 1.25$ for booklet. "Nickel batteries, SAE , for lists ata
Cadium Power,"

Write or call at
SANDWELL PLANT LTD
2 Union Drive, Boldmere
Cuthen 9764 See full range at TLC, 32 Craven street, Charing Cross, London

WW - O49 FOR FURTHER DETAILS

Audio Tost Sots Services type CT373 bench test set comprises audio ose
$17 \mathrm{c} / \mathrm{s}$ to 170 Kc in 4 decade ranges direct calibration $0 / \mathrm{P}$ var 300 uv to 10 V
 10,30 r 100% Various 0 P impentances can be selected for the osc inc Bal or
 netal case erith rion
Wayne Kerr, $\varepsilon 65$.
 $15 \mathrm{Mc} / \mathrm{s}$ supplied with cath ode follower probe unit, max 0 // is $2 v$ RMS this is
 dirive a $200 / 250 \mathrm{v}$ mains $1 / \mathrm{P} £ 22$.
Test Set RTTY STC TS for checking 7 B series teleprinters, Auto $T \mathrm{~T}$, drive
magnets, oplarised delays etec con supply tor motor) standard mains $1 / \mathrm{P}$ with tagnets, polarised relays etc (no supply for motor) standard mains $1 / P$ with
nst book circ etc. ext soiled cases $£ 14$.
 nables speed \& diriection on be controlled from 0 ot 1 RPM supplied with trans rect tor 240 W with circ $£ 10.80$
 . E4.50.
 UV Recordors 18 chan for use on $115 \mathrm{v} 400 \mathrm{c} / \mathrm{s}$ these are fited with 24 v DC
 Pulse Generators Services type cto standard mains. $1 / \mathrm{P}$ baisic range

CRT Indicator with 3" CRT 3WP1 plus 13 min valves int $400 \mathrm{C} / \mathrm{s}$ EHT $L T$
P. U . gives CRDF trace reqs ext sine cos $1 / \mathrm{Ps}$ complete in case with circ $£ 25$.
. \& $\&$ B Band Test Sets standard mains $1 /$ P S band uses DET. 29 osc plus 2 KC ulise mod vara 0 P P completet in carrying case with mon meter, X band sam
but as $C V 5897$ Osc both in new cond price either type $£ 25$.
 MI telemerry osc nom Elve eizeery osc nom
 controlled circ ameters mounted in semi weather proof case with circ. okay or plating controllers $£ 35$
Noise Level T.S. true RMS AC VTM 30
240 V £12. Control Box A / C radio
swis, amps etc $£ 2.30$.
Cin
 Variac Units dual gang rated $180 \mathrm{v} 500 \mathrm{c} / \mathrm{s}$ at 15 amps per section with knob
can be used on $50 \mathrm{c} / \mathrm{sif} 1 / \mathrm{P}$ volts limited to $50 / 60$ In 13 .
 manuacture $\varepsilon 2.2$

T120 end viewing with data new 2 for $£ 1$. Panel Moters moving coil types mostly $2 / 3$ dia types new 4 dififerent tor
$£ 4$. Extractor F
new $£ 7.50$.

20.

Aorials dipole aicratioverhaulen
$20 / 50 \mathrm{Mc} / \mathrm{s} £ 2$ or 2 for $£ 3.50$.
ostsot special purpose sold for parts contains, swt, plugs, lamps. h.d. rot
wis, conds, transis, small variac all in ali carrying case size $15 \times 16 \times 111^{\prime \prime}$. Freac Merters type BC 221125 Kc to $20 \mathrm{Mc} / \mathrm{s} £ 27$.
rransponders $104 / 208 \mathrm{Mc} / \mathrm{s}$ with diplexer DC to DC conv stab 28 v transis
nits new cond no gen ET .50 .
T.v. Tuner UHF type transis manual tuned with circ new $\mathbf{£ 2 . 5 0}$.

We have the following for callers CD711 dual race bench scopes $£ 40$.
Murphy $B 41$ Receivers LF $£ 25$, $T 8801$ Sige Gens $10 / 300 \mathrm{Mc} / \mathrm{s} £ 25$ to $£ 45$. All above are ex equipment uniess stated new, prices include carriag
A. H. Supplies

122 Handsworth Road, Sheffield $\begin{gathered}\text { Phone: } 444278 \text { (0742) }\end{gathered}$

127

 SOLARTRON CD1400 15 MHZ TWin Baam 120 .

 DIGITAL EQUIP. COAP. Disk Drives (Fivedol 16 an Cariage all units $\varepsilon 4$ oe. V.A.T.T. at 8%

CALLERS VERY WELCOME STRICTLY BETWEEN 9am-1pm and 2-5pm Monday to Saturday incl

NORWOOD ROAD, READING TELEPHONE NO. READING 669656
(2nd turning left past Reading Technical College in King's Road then first right - look for 'spoked Wheel'" on right)

S I N T E L

ASSEMBLED LATCHED COUNTER MODULES

* Versatile suitable for all types or circuit board.
\star Versatile, suitable for all types of circ
\star Fast, economical and efficient in use.
\star Accepted and approved by leading industrial,
* Accepted and approved by edicational establish inments.
* Compact, high quality, low profile finished results.
* Ideal for microprocessor development.
* Designed for all prototype and pre-release
* Designed for al

DRAMATICALLY REDUCES DEVELOPMENT COSTS
T. J. Brine Associates, Unit 116b, Blackdown Rural Industries,
Haste Hill, Haslemere, Surrey GiU27 2 AY. Tel: 042852445 .

WRELESS WORLD, JULY 1979

 Out devisin and dovelopment service can
produce analogue or hybrid machines de-

PHYSICAL \& ELECTRONIC LABORATORIES LTD.

WW - 068 FOR FURTHER DETALLS

Television - Principles and Practice J.S. Zarach and Noel M. Morris
\star Detailed and comprehensive, yet easy to follow \star llustrated with drawings and colour photographs \star Up-to
system
\star Covers the relevant parts of the C.G.L.I. Radio, T.V. and
Electronics Mechanics course, it will also be of use in many
Electronics Mechanic
other courses.

M$\begin{array}{ll}\text { hardcover } £ 12.50 \\ \text { paperback } \mathrm{f} 5.95 & 0333192206 \\ 0 & 33319214\end{array}$

For further details contact: Robert Devereux, Th
Press, 4 Little Essex Street, London WC2R 3LF.

解 system which incorporates all the features developed for the world famous KEF Mode 104 aB , and hear its quality at your KEF deale before you buy and build the kit
 The kit contains two baffles (only one illustrated) with the two drive units already preassembled, pretested and fully wired through an Acoustic Butterworth filter
and network. The mid frequency response can be
adjusted by a 3-position contour control, and adjusted by a 3-position contour cont
the tweeter is fuse protected.

The lowest frequencies come from an
The lowest frequencies come from an
acoustically coupled bass radiator, without
overall loss in efficiency from such a compact enclosure.
The instruction leaflet takes you through the enclosure construction sequence step-by-step with photographs to help.
Write now for more details, and the name of your nearest KEF dealer where you can hear you buy the kit.

> KEF Electronics Ltd

Tovil, Maidstone, Kent MEI's 6QP.
Telephone: 0622-672261. Telex: 96140.
KEFII

Advertisements accepted up to 12 noon Friday, June 29 for August issue, subje
to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 8.50$ per single col. centimetre (min .3 cm) LINE advertisements (run on): E1.20 per line, minimum three lines. BOX NUMBERS: 60 p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU, Classified Advertisement Rates are currently zero rated for the purpose of V.A.T

Are you a special breed of TV Engineer? who can deal with people as well as with colour television receivers and audio equipment.

We are currently seeking a SENIOR ENGINEER to help look after our retail customers at home and abroad.

Based at our superbly equipped Engineering Centre at Chessington, Surrey, you will be involved in, the preparation of sample colour TV receivers for world wide markets, liaison with our modern
factories in the North East and quality assurance tests on receivers as they are delivered to our factories in the North East and quality assurance tests on receivers as they are delivered to our
customers." You will also check out audio products from overseas manufacturers, prior to purchase, to ensure that performance and safety meet our high standards.
You could earn up to $£ 5,500 \mathrm{p}$.a. in this particular appointment depending on your qualifications, experience, ability to communicate and writing reports in clear English. The freedom to travel at experience, abinty to communi

If competence is demonstrated the opportunity of promotion to higher grades is likely to occur. Financial assistance will be given if domestic relocation is involved
A junior position on these projects is also available.
Please write to or telephone:-

Mr H. Brearley, Rediffusion Consumer Electronics Ltd Fullers Way South, Telephone: 013975411

REDIFFUSION

Radio Communications

Electronics Engineers and Software Designers

Mid-Sussex - S.W. London

 Salaries up to $£ 7,000$ To join our expanding R\&D Laboratories covering a wide range of R.F.spectrum, from L.F. to spectrum, from L.F. to V.H.F. Equipments include transmitters and
receivers for marine and land based use, radio navaids and radio onitoring remote computer controlled systems. lectronics Engineers should have experience in transmitter or receiver, oftware Designers should be experienced Programmers with an terest in control, signal processing or navigational software.
Attractive salaries are complemented by excellent prospects and
ontact: The Perso
Limitet. The Personnel Manager, Redifon Telecommunications $01-8747281$ (reverse charges).

ELECTRONICS

PRODUCTION

ENGINEERS AND TECHNICIANS

Dolby Laboratories, the successful and progressive London manufac-
 fabricition of test and staff. Duties will include the design and
application of techniques to maximisise productut, method study and
and Qualifications: Several Qualifications: Several yearss experience in electronics manufacture,
appropriate academic cualification and the ability to work projects
through to successful conclisions without close supervision. Competitive salaries and excellent employment conditions are offered. For application form, contac
DODolby
Paul Garrard
DOLBY LABORATORIES, inc DOLBY LABORATORIES, INC.
346 Clapham Road, London, S.W. 9

Engineers

One of our most valuable assets!

We realise that without the skills of our engineers, the reputation of the BBC for technical excellence would not exist.
We intend to enhance this reputation, and we are looking for engineers to help us take broadcast engineering into the 21st Century
Whether you are an 'old hand' who feels that your work has become undemanding and, perhaps, job as an engineer, or expecting to qualify later this year, we believe that you can benefit by sharing an exciting future with us.
We recognise experience, but it is certainly not essential, as our high engineering standards are
matched by an equally professional training programme, which covers the very wide field of broadcasting.
If you have or expect a degree, HND or HNC in Electronic Engineering or Applied Physics, a C \& G
Full Technological Certificate in Telecommunications
or an equivalent qualification, we would like to hear

OUR ENGINEERS RECEIVE STARTING SALARIES OF BETWEEN $£ 5170$ and $£ 5620$ in London, ($£ 4720$ and $£ 5170$ elsewhere) and many earn shift allowances of between $£ 200$ and $£ 750$
in addition.

All our more senior vacancies are filled by internal competitive promotion so your future can be what you make it. Even without promotion initial salaries will be increased annually by increments to $£ 6295$ in elsewhere)
We have vacancies in London and at various centres throughout the United Kingdom. If it is necessary appointment, we will consider assisting with the cost.

INTERESTED?

If you are, complete the coupon below and send it to The Engineering Recruitment Officer, BBC, London WIA 1 AA or telephone $01-5804468$ ext. 2675 and we will send you further details and an application form.

DESIGN ENGINEER ELECTRONICS
 AUSTRALIA

Hills Industries Ltd. of Adelaide, South Australia, invite applications from Engineers nd otherwise experienced personnel to develop and design antennae and ssociated equipment for communications and TV broadcasting.
he successful applicant would work with an enthusiastic team who have established range of equipment held in high esteem throughout Australia.
Duties would be to investigate, examine and develop new designs, specifications and equipment and antennae arrays so specified.
The successful applicant may or may not have had experience in the antennae development area, but ideally will have a good working knowledge of antennae design, theory and practical experience in the installation of maintenance of broadcasting and communication antennae systems.
A salary of $£ 7,500$ is envisaged dependent on qualifications and experience. Superannuation is available after a qualifying period.
Hills are an Australian company, broad based, operating in each state as well as New Zealand and the U.K. The U.K. operation does not include the electronics field. Written applications in the first instance giving experience and qualifications along with marital status etc. to the below address. An assurance of strictest confidence is given.
Interviews will be held in London mid June to early July. Please address applications Inter
to:

The Managing Director
The Managing Director
HILLS INDUSTRRIES LIMITED Pontygwindy Industrial Estate
Caerphilly, CF8 1XF, Mid. Glam

South Wales

A.B. ELECTRONIC PRODUCTS GROUP LTD. ABERCYNON, MID GLAMORGAN

MICRO ELECTRONIC ENGINEERING OPPORTUNITIES
Due to continued expansion A.B. Micro Electronics, a subsidiary of the A. B. Electronic Products Group are se
vacancies for qualified Engineers and Technicians.
The positions are in Design, Development, Applications and Test Engineering. Applicants should possess experience in at least one of these fields. A background in thick film mict
Candidates should be educated to H.N.D./ Degree standard, in Candidates should be educated to H.N.D./ Degree standard, in
either Electronics, Electrical Engineering or Physics, although exceptional experience will be considered in the absence of
academic qualifications in some instances.
Attractive salaries are by negotiation. Promotion prospects are
excellent in this expanding division. Assistance will be given excellent in this expandin
with relocation expenses.
Write or telephone for an application form and for further information on these positions to:-

Staff Personnel Officer
A.B. Electronic Products Group Ltd. A.B. Electron
Abercynon
Mid Glamerg

Mid Glamorgan
Tel: (0443) 740331
salary

CURRETILY UNDER REVIEW RADIO TECHNICIANS

 Keep police lines open

SIEMENS

Computer Service Engineers

 To £6,400+excellent benefitsWhen your job becomes so predictable and routine that you perform by habit instead of by thought and initiative,
then it's time to move on. At Siemens, you'll be working in a technically stimulating environment that will provide you with all the scope and
backing you need to develoc your career.
opportart of farthitherexpansion programme, we offer the following backing you need to develop your career. As part of a furthe
opportunities to experienced computer sevvice engineers:
Word Processing
We are a European market leader in word processing technology and, in addition
to our well-established Texx 580 syster, we have recently introduced a new to our well-establish
generation of microprocessor-controlled systems.
This is a fine opportunity for yout ojoin a developing service team. You'll be involved with acceptance-testing equipment received from Germany, mod
commissioning and systems instalation.
Ideally you should have experience in mini-computers and associated peripherals. A knowledge of
microprocessor technology would be an advantage. Full systems training will be given. The post is based in
Sunbury but will involve some travel, mainly in the Greater London area and to Germany for traing purposes
Process Computer for Defence Project
A ground-báased Siemens 300 /hb-bibi system is used for in-flight analysis and testring as part of a NATO defence
prorgamme. Peripherals are card dand atae reacders, floppy discs and disc controllers. You'll laso be involved in
system assembly, instaliation and maintenance. We'll give you full initial training-mich ofitit in Germany-on all aspects of our system, including software. The
 working on main frame computers and peripheral equipment such as VDU' C , discs and printers.

Alt hhese positions carry compotitive salaries and an attractive package of company benefits includes generous Male and female applicants should contact Phil Bainbridge, Deputy Pers Male and female applicants should contact Phil Bainbridge, Deputy Personne
Manager, Siemens tidd., Windmill Road, Sunbury-on-Thames, Middelesex.
Lel. Te:S Sunbury 5 Sos

136

RADIO ENGINEERS

\longrightarrow

M.E.L. specialists in Radio Systems, require Engineers to develop an Advanced family of Multirole H.F. Radio
Products. With an ambitious programme of High Products. With an ambitious programme of High
Technology design, vacancies exist at all levels for Technology design, vacanciesexist and allied equipment and Technical Assistants. you have experience or qualifications in any of the following

* Receivers
* Transmitters
* H.F. Systems
* Remote Control
* Digital Processing
* E.C.M. E.C.C.M.

* E.M.C.
* Power Supplies
* Technical Proposal Authorship

Then we would be pleased to talk to you
All positions attract excellent starting sala aries, generous holiday and sickness entitlements, staff shop, subsidised restaurant facilities and generous relocation expenses
be given plus help with your increased mortgage where necessary: necessary , lease writ to or telephone Anne George. Personnel Officer M.E.L. Manor Royal, Crawley, Sussex. Tel: Crawley 28787

TECHNICIAN

 (GRADE 5)

 lest tacilities
Minimum aualitiations - recognised
Electical trade appronticesstio.

LVN/TIT

London Weekend Television
requires experienced
ELECTRONIC ENGINEERS
to work in their Video Tape Recording Section. Salary $£ 4208$
to $£ 5777$ p.a. according to experience. Salary review due 1 s
Please telephone 01-261 3237 for an application form.

BIRKRECC COLLEGE
EPARTMENT OF PSYCHOLOGY GRADE 4
olications are invited for thre Grade 4 posts as foillows:
Mechanical Technician 2. Electronics Technician

Posts 1 and 2 will involve design and
construction of equipment for

 assist in running the undergraduat
teaching aborotios A. Applicants
all posts should be 23 ori over win
 ion or have served an appropria
reconnised appenticaship salary
scale $£ 3746-£ 4323$ including

 Completed forms, which should state
ctearly which poost is spopled or tor
should be returned as soon as posshould
sible.

THE THOMSONFOUNDATION A) VACANCIES AVALLEBLE A) $\begin{aligned} & \text { VACANCIES AVALLABL } \\ & \text { SENGINEERIN } \\ & \text { ENGIN }\end{aligned}$ ENGINEERIN
LECTURER B) ENGINEERING LECTURER
 not less than three years for Lecturer
and seven years for Sonior Lecturer
and Duties include theoratical and praci
cal training of broadcast engineers cal training of broadcast
and tachnician formers
tessional television stations. Tessionat television stations. Student
These posts are based in a
Residential College which houses a
 fully operational televivison station
and is situter in the ruar suurb of
Newlon Mearns, near Glassow Newton Mearns. neer
Desirable aualifications: Degree,
onD or equivalent. Recent prac.
cast experience essential.
 Angnearions in writing to The Prin-
Anp
A.

Electronics Engineers on the move

INVEST \quad DESIGN, TEST, Q.A.; FIELD SERVICE, MANAGEMENT, ETC.
5 MINUTES
IN YOUR
FUTURE Take advantage of the best opportunities being offered in the Electronics Industry from amongst over 3,000
U.K. Companies with whom we deal. We are seeking all categories of Electronics Engineers for equipment
ranging from computers to communications.
By returning the application form below, your job requirements will be matched against our clients'
numerous vacancies, many of which are not advertised. Your application will be treated instrict confidence and no approaches will be made to exxisting employers or to any other companies you care to specify. Please So donn't delay - act now to give yourself the pesticants.
If you wish to discuss any aspect of the Electronics job man finding the perfect job

Car Driver: \qquad ar Owner:
Approx. Salary level:

Secondary School Qualifications:
College or University Qualifications
Any Professional Membership.

Technicians

all areas throughout the UK

Storno are one of the world's major manufacturers of VHF, UHF telecommunications equipment and control systems. Currently undergoing a planned phase of expansion we produce mobile, portabl and personal systems with many and varied uses. To strengthen our

Installation Technicians

o install and commission Mobile Radio equipment and assist in installation of major systems

Radio Technicians

to service VHF/UHF radio telephone equipment and associated control systems. Vacancies for Workshop
digital techniques an advantage.
For all posts we offer highly competitive salaries. Write or telephone for Limited, Frimley Road, Camberley, Surrey. Tel: Camberley 29131.

Storno

besearch technician

VIDEO

 ENGINEER Experienced all-round Video Engineer required by leading company in North London. Good pay, Bonus, Pension, Company Car. Phone J.Rabin or A. Brown, 01 Rabin or A
9510466.

TEST EQUIPMENT ENGINEERS

ARE YOU SEEKING AN OPPORTUNITY TO WORK ON SOPHISTI CATED TEST GEAR EMPLOYING THE LATEST ANALOGUE AND DIGITAL TECHNIQUES?
If so, join Rediffusion and work on a number of exciting projects associated with the design and .
Effective testing plays an important part in ensuring that the finished product reaches the high
quality levels necessary for success during the quaw equipment will be microprocessor controlled. Even if you only have limited knowledger of digital new equipment will be microprocessor controlled. Even if you only have limited knowledge of digital
techniques this opportunity will enable you to learn the mysteries of microprocessors and their application to testing complex electronic sub-assemblies.
Applications are invited from engineers with a creative ability to work in a congenial and stimulating intermediate levels offering opportunities for career advancement The salary range extends to $£ 6000+$, the higher end of which is for the ideally qualified engineer
The usual big company benefits, such as pension scheme, free life insurance, 4 weeks' holiday with choice of leave period, sports facilities and assistance with relocation expenses are offered for these

If you are interested in these challenging positions and would like more details or wish to discuss the
matter in depth, please write or telephone:- Mr B. Brearlee
Mr H. Brearley,
Head of Technical Services,
Rediffusion Consumer Electronics Ltd Fullers Way South, Chessington, Surrey KT9 1 HJ Telephone: 01-397 5411

REDIFFUSION

CHIEF ENGINEER

COVENTRY ILR

The company awarded the contract to provide Independent Local Radio in Coventry is seeking a Chief Engineer with experience in sound broadcasting studio operations and maintenance. The successful candidate will act as the senior executive responsible for technical installations, mainth the IBA on technical matters. A competitive salary will be offered.

Applications with full curriculum vitae, which will be treated in strictest confidence, should be addressed to:

THE MANAGING DIRECTOR
MIDLAND COMMUNITY RADIO 2 MANOR YARD
NEW UNION STREET
COVENTRY, WEST MIDLANDS CV1 2PS

QPIONEER

An extensive expansion programme to diversify our after sales service activity has created addional vacancies au service centre in Iver. We require service personnel to join a friendly team of Technicians in
our modern well-equipped service department and laboratory to assist. our modern well-equipped service department and laboratory to assist
in repair and maintenance of sophisticated Audio and In-Car stereo

BENCH SERVICE

TECHNICIANS
Applicants should hold C\&G Radio and TV, Electronics Technician or equivalent certificate with a minimum of two years experience in the
Audiofield. Alternatively i ive years of relevant experience with sound Salary in the area of $£ 3,500$ to $£ 4,500$ per annum, according to

LABORATORY

ASSISTANT ENGINEER

Applicants should hold a Degree, HND or equivalent with a minimum tuners and magetic recorders is essential The work entails measuretuners and magnetic recorders is essential. The work entails measure-
ments and modification of existing designs, investigation of special consumer complaints, writing technical reports, etc
Salary negotiable, according to experience.
If you think that you can help us in our expansion programme then
contact us now and find out more about our contact us now and mo our more about our generous staff benefits. release to advance your career and knowledge in the field of high
fidelity.
Luncheon vouchers; Pension Scheme
Apply in writing to:
Mr A. H. K. Littlemore Pioneer High Fidelity (G.B.) Ltd.
Pioneer House, The Ridgeway IVer, Bucks. SLO 9JL
or Telephone: Iver (0753) 652222 (9336

DPC ELECTRONICS LTD

1. PRE-PRODUCTION

 SERVICES MANAGER
2. PLATING CHEMIST

3. QUALITY ENGINEER

DPC Electronics Ltd, a major Producer of both Plated Through
and Print and Etch PCB Owing to expansion and are now entering the Fine Line fiel Company require the above named staff.
The first position requires a good knowledge of PCB Produc-
tion techniques including press Work NC tion techniques inclusing andss work, NC Drilling, Pho
tomechanical Processing and photography, proved ability in the administration of a similar function. The other two positions require relevant experience in the PCB or a similar hild hogether with applate qualifications. These three positions carry competitive starting salaries, a comprehensive benetit programme, including Profit Sharing
Scheme, Contributory Pension Scheme, Free Life Assurance The successful applicants will be given a re-allocation allowanc The factory is situated in a New Town Development area with easy access to Motorways.
Please forward details of your experience and qualifications to
Mr. M. H. T. McKenzie-Folan
Personnel Manager
DPC Electronics
Gamett Place
Gamett Place
Gillibrands
Road
Skelmsersdale, Lanc
Telephone: Skelmersdale 22444
(9291)

Appointments

140

TOP JOBS IN

 ELECTRONICS Posts in Computers, Medical,Comms, etc. ONC to Ph. 0. Free

23 Gosfield Street, W. 1

PHILIPS

Medical

X-Ray Service Engineers

We require for contract work throughout the world experienced X-ray engineers to install and maintain the very latest in advanced diagnostic apparatus.

If you feel that you have the qualifications to take this opportunity of joining a major Company in this field, then you will be amply rewarded with a job that is both satisfying and financially very worth while. Contracts will be initially for a
period of two years, generally in the Middle East with the possibility of a further term if mutually agreed.
Although Philips Eindhoven would be the employer, please contact initially
Mr. J. O. Skinner, Regional Co-ordinator, Philips Medical Systems, Kelvin House, 63-75 Glenthorne Road, Hammersmith, London W6 0LJ俍

Development Test Engineers

Electronics

Wouldn't you like to work in a well-equipped laboratory that's got the And wouldn't you like to work for a company renowned for advanced And wouldnt you like to wo
Ferranti are looking for Development Test Engineers to prove specifications and test equipments; also to test and fault diagnose on a wide variety of prototype, pre-production and producthe with the
If you have an ONC/HNC or C G in electronics together If you have an ONC/HNC or C\& G in electronics together with the good salary (opportunities for overtime if you want it), a productivity onnus scheme, flexible working hours and other benefits associated with a large and successful company
You have nothing to lose, and probably a great deal to gain by talking to Personnel Department, Ferranti Computer Systems Limited, Bracknell Division), Western Road, Bracknell, Berkshire. Pleas 4232 ext. 471
These appointments are open to male and female applicants.
FERRANTI
Computer Systems

둥 MITMMATV ENGINEERS - try a move to the WEST COUNTRY

 Wortwerd Toievision Limited, Dorry':
Crome, Plymouth Phi 2sp.
service.
Phone or wirie BUREAUTECH
AGY, 46 SELVAGE LANE AGY, 46 SELVAGE LANE
LONDON, NW7. $01-959$ 3517.

SENIOR TECHNICAL

 ENGINEERThe post includes a wide range of duties, but primarily the applicant
wiil be involved with hhe maintenance, develiopment and instalation of will beinvolved with the maintenance, develiopmen.
recording equipment at our London based Studios.
The successtul applicant will have a sound electronic knowiedge
Applications in writing please to:
ADVISION
23 Rosfield STrroet,
R. 1
ADVISION RECORDING STUDIOS
have a vacancy for a

HE MANOR MOBILE AND THE MANOR STUDIO
have a vacancy for a Maintenance Engineer. Phone Rhonda
2128.

994)

 .
E

\qquad inte9360)

TEST ENGINEERING PROFESSIONALS FOR ADVANCED AVIONIC SYSTEMS

MEL, a division of the International Philips Electronic and Associated Industries Group, are looking for professional test personnel to work on sophisticated
Avionic and associated systems. We design and manufacture a wide range of equipment including Air and Shipborne Radar manufacture a wide range of communications and radar control systems so those appointed can look forward to involvement in a wide and diversified range of projects utilising an DATA PROCESSING. DIGITAL. MICROPROCESSING ANALOGUE Weare looking for: We are looking for:

SENIOR TEST ENGINEERS,
TEST ENGINEERS AND TEST TECHNICIANS
with experience in one or more of these fields together with HNC or $\mathrm{C} \& \mathrm{G}$ Wealso consi
ealso consider people with TV Bench Forces 3rd Line Servicing personnel with a background in fault finding We offer excellent conditions of employment, including relocation expense and normination for local authority housing in this attractive part of Sussex
where appropriat. where appropriate.
with our successful organisant experience and would like to make your future Department, M.E.L., Manor Royal, Crawley, Sussex. Tel: Crawley 28787 Ext

Appointments

WIRELESS WORLD, JULY 1979

SCIENCE RESEARCH COUNCIL

boratory has vacancies fo
ELECTRONIC ENGINEERS

ailised Balloon Platorm Project

The Platform, which in itself weighs approx. 1 ton, is designed to carry astronomy experiments for the UK
scientific community and point them with near arc-second accuracy, operating at altitudes up ot 40 km . scientitic community and point them with near arc-seconaccuracir, 1977 and 1978 and successfully
The Plattorm was largely re-designed at Appleton Laboratry during 19 .
flown with an experimental peyload in September/October 1978. Flight campaigns are planned for the Tlown with an experimentral payload in September/October 1978. Flight campaigns are planned
US or Australia during spring and autumn each year and some sevvice overseas will be required. There are two posts at Protessional and Technology Officer III level and the successful applicants will be
responsible for production, testing and maintenance of electronic systems on the Platorm and its ground responsible for production, testing and maintenance of electronic systems on the Platiorm and its ground
checkout equipment. There is also a vacancy for a Professional and Technology Officer IV to assist in these checkou
The post will initially be based at Slough with a move to Chilton in Oxfordshire at a later date. Candidates must possess an ONC or a TEC / SCOTEC certificate, or an equivalent or higher qualifications in Candidase severt subiect and for the higher posts 8 years' experience (inclucing training). Some knowiedje o
a relevant
telemetry (PCM) and telecommand systems electromechanical systems, optical systems and experience telemetry (PCM) and telecommand systems, electrome
of environmental testing and field trials would be useful.
Salary including Outer London Weighting for PTO III grades will be on the scale $£ 4601$ - $£ 144$ p.a. and
for PTO IV grades will be $£ 3320-\mathrm{E} 4601$ dependent upon age and experience. Salaries are currently under tor PTo IV grades will be $£ 3320-£ 4601$ dependen Further information and application forms may be obtained from: Mr. N. J. Myer, Science Research
Council, Appleton Laboratory, Ditton Park, Slough, SL3 $\mathbf{~ S J X ,}$ Berks. Tel. Slough 44234, Ext. Council, Appleton Laboraty,
153. Closing date: July 6 , 979 . (9335)

Electronics Technician

A new challenge in Radio Systems Development

ITT Components Group Europe has a world-
wide reputation for the quality and reliability of its wide reputation for the quality and reliability of its products which cover virtually the whol
spectrum of electronic components technology.
At the Company's headquarters in Harlow At the Company's headquarters in Harlow
there is an expanding programme of development work in progress and additional Electronics Engineers are now required to join a small,
enthusiasticand highly professional team developing synthesizers and oscillators for professional ing synthesizers and osc
and military radio systems
This is an important new project and we are looking for self-motivated Electronics Engineers
with initiative, who have experience in radio frequency design. An appropriate degree is
desirable but less qualified men and women with sound practical experience and an interest in this type of development work, would also be
considered. considered.
We offer an attractive salary with contributory pension scheme with transfer option and
assistance with
relocation expenses where necessary.
Write with details of experience to Miss R. Wayper, 1 ITT Components Group Europe,
Edinburgh Way, Harlow, Essex. Telephone: Edinburgh Way, Harlo
Harlow 26811 ext. 2221.

IITI

Required to work with team of Engineers on world's leading industrial radio controls.
Duties include assembly, wiring and test of complete equip ment as well as testing small batches of PCBs.
Previous experience of high quality wiring essential. Previous production testing experience would be an advantage. Suitable candidate must be able to work unsupervised Telemotive looks only for above average perso
reflected in conditions of employment offered

Please apply, giving details of previous experience to:
Telemotive U.K. Limited TELEMOTIVE HOUSE, 100 HIGH ROAD BYFLEET, BYFLEET 47117

UNIVERSITY OF LEICESTER

 EXPERIMENTAL OFFICERApplications are invited for the academically related post of Experimental Officer in the Department of Chemistry. The person
appointed will be concerned with the design, development and appointed wn of electronic equipment and the modification and
constuction
maintenance of analytical instruments in the department. A knowledge maintenance of analytical instruments in the department. A knowledge
of modern electronics including digital, datat logging and R.S. circuitry is essential Candidates should be graduates or have equivalent professional
qualifications. Salary on an incremental scale, $£ 3,689$ to $£ 6,108$ p.a. qualifications. Salary on an incremental scal
according to qualifications and experience. according to qualifications and experience.
Applications should be sent to Head of Department, De:-
partment of Chemistry, University of Leicester, Leicester, LE1

Appointments

 You could travel- we are based in Cheltenham but we have other
centres in the UK, most of which, like Chetenham are situated in centres in the UK, most of which, like Cheltenham are situated in
envirionmentally atractive locations. All our centres require resident
隹 Radio Technicians and can call for others to make working visitsts. There.
wiil alos be some opportunities for short trips abroad, or for longer
peliods
maseoe the future b bring

RADIO

TECHNICIANS

At the Governmient Communications Head quarters we carry out research and deve

COMMUNICATIONS R\&D AND ADD TO YOUR SKILLS

You tart at $£ 3900$ rising to $£ 5530$, and promotion will put you on the
road toposts carrying substantially more. There are also opportunities
for overine
 Get full detais from our Recruitment. Officer, Robby Robinson, on
Cheltenham (O242) 21491, Ext. 2269 or write to him at GCHO
 isuitable we
of course.

You should be at least 19 years of age, hold or expec to obtain shorly the City and Guildss.
unications Technician Cerriticate Part
\qquad

ORK IN Your iob as a Raaio Technician will cöncern You in develo
constructing, installing, commissioning testing yond
 wide range of processing equipment in the audio to microwave range,
involving modem logic techniques, microprocessors, and computer

NeneCollege Northampton

Senior Lecturer in

Electrical Engineering

Candidates should be graduates or Chartered Engineers with recent industrial experience. The successful applicant will be or Electronics
The Post is tenable for one academic year from September, 1979 Salary Scale: £6051-£7065 (under review) point of entry on previous experience
Application forms and further particulars are available rom The Senior Administrative Officer, Nene College,
Moulton Park, Northampton NN2 7AL.

VAN DE GRAAFF TECHNICIAN

Required to assist with the operation and maintenance of the 4 MV accelerator recently installed at the Gray Laboratory, This machine is
being used for research aimed at improving the radiation treatment of
Experience in any of the fields of Electronics or Vacuum Technology a distrinct advantage. Candidates should possess H.N.C. or equivalent, time served trades
men will be considered. Starting salary up to $£ 5034$ (under review) according to experience,
age and qualifications. Further information and application form, in confidence, from Depury Director
CRC Gray Laboratory
Mount Vernon Hospital
Northwood, Middx. HA6 2RN

Applications are invited from experienced

ELECTRONIC

 ENGINEERS
(Graduates or equivalent)

to participate in development and research project within the Department of Physiotherapy, primarily in measurement of muscle function. Ongoing activities in which he she would be expected to play a role include general duties in connection with these projects. A knowledge of torque and velocity transducers would be an advantage.
Applications should be made to Mr. G. Smith, Assist ant Personnel Office, Hammersmith Hospital, Du Cane Road, London W 12 OHS.

AUDIO + VIDEO LTD.
 VIDEO \& TELECINE
 OPERATORS

required for Ampex and RCA Quad VTRs and Sintel and RCA. Telecine Channels for both our day and night shifts. Persons with requisite television engineering background may Contact:

Pater Horton
Audio + Video Lim Audio + Vide Limited Telephone: 01-580 7161. 1LX

SIEMENS

Telecommunications Engineers

Expansion of our Telecommunications Test Equipment Workshop has resulted in a. requirement for exper:
complex in Sunbury.
Your main function will be the repair and calibration of telecommunications test equipment
both in the workshop and os site. There w will be trave withit the UK and occasionally Europe both in the workshop and on site. There will be travel within the
and training will be provided both in this country and Germany.
You should have a good background in servicing both analogue and digital equipment,
 by the armed forces, Post Office or British Rail would be a considerable advantage. Previous
nvolvement in small design projects and prototype modelling will be necessary for the ccasional modification of equiument to customer specifications and considerable emphasis placed on the use of automatic test equipment
Employment benefits are excellents, in additition to a competitive salary, we offer an excellent,
non-contribibutory e ension scheme, sick-pay ycheme, active sports and social club, subsidised
restaurant and very good working conditions.
Interested applicants should telephone or write for an application form to Phil Bainbridge, Deputy Personnel Manager, Siemens Limited, Siemens House, W
Road, Sunbury-on-Thames, Middlesex. Telephone: Sunbury 8569 ext. 325 .

CHELEA COLLEGE
Univerity of London ELECTRONICS TECHNICIAN ENGINEERS/ required for interesting work in Elec.
tronics Workshos serving Eleatronics

 for further
Grade 3 .
Details and application form
from MrM. E . Cane $(3 / 5 E W)$, D\&

(EA) GAPITAL FREE JOBS LIST FIELD SERVICE ENGINEERS BASC SALARIIS TO

$$
7,000+\text { CAR }
$$ 30 Windmill Street. London, WI

$01-6375551$

Electronics Engineers

Could you manage our Technical Department? £7,000 p.a.

Grundig International Ltd., part of the world-wide Grundig organisation, is one of the largest suppliers of
business equipment, audio. CTV and VCR products business equipment, audio, CTV and VCR products
througout the UK, to our own appointed specialist dealers.
We require an experienced Engineer $(\mathrm{m} / \mathrm{f})$ with a
practical flair to organise and supervise our Technical ractical flair to organise and supervise our Technical ddvice to our dealers and consumers.
The remuneration package offered is excellent plus the
usual large company benefits.
,
Please write or telephone for an application form to the
Personnel Officer, Grundig International Lid., ersonnel Newlands Park, Sydenh
Telophone no.: 01-659 2468.

Radio Officers

If your trade or training involves radio operating and you are no more than 35 years of age, you quality
be considered for a Radio Officer post with the Composite Signals Organisation.

A number of vacancies will be available in 1980 for suitably qualified candidates to be appointed as rast 2 years' radio operating experience or hold a T certificate.

On successtul completion of 40 weiks' speciailist
training, appointees move to the Radio Officer Grade. Trainee Radio Officers start on $£ 2,605$ at 19 up to
$£ 3.034$ at 25 or over. Atter completion of specialist E3, OU4 at 25 or over. After completion of specialist
training Radio Officers start on $£ 3.571$ at 19 rising to
$£ 4.675$ if you are 25 . $£ 4,675$ if you are 25 or over: then by 5 annual
increments to $£ 6,340$ inclusive of shift and weeken ncrements to Eb , 340 inclusive of shift and w.

GCHQ

For further details apply to
Oover Recruitment Officer
mment Communications Headqua
Priors Road, Oakley
Cheltenham, Glos. GL52 5AJ
Telophone: Cheltenham 21491 Ext. $2269{ }_{(9105)}$

R\&D Engineers ADVANCED RADAR AND RADIO APPLICATIONS

Northern Home Counties

Having recently secured substantial R \& D Contracts in both the Radar and satellite based Navigational Aids field, our Client, the Research Centre of a major
international group, now seeks to appoint of qualified engineers with experience in any of the following disciplines:

- RADAR SYSTEMS DESIGN \& MODELLING
- ANTENNA SYSTEMS (Particularly Arrays)
- VHF/UHF RECEIVER DESIGN
\bullet RF/IF CIRCUIT DESIGN
- HIGH SPEED DIGITAL OR ANALOG SIGNAL PROCESSING
- MICROPROCESSOR INTEGRATION WITH

RADIO/RADAR SYSTEMS
With access to impressive research facilities, these positions will be of particular interest to self-motivated
engineers seeking involvement with the ceptual design of novel systems. Every encouragemen will be given to progress projects through to advance development phases which will require frequen
liaison with associated companies in Europe and the USA, possibly necessitating some limited travel. In addition to an attractive starting salary based on experience and qualifications, the company offer and relocation expenses wherc appropriate.
This position is open to both male or female applicants and for fuoting REF/RRA to:
Mr M W Edwards
Technical \& Management ROCIATES LIMITED 33 Bancroft, Hitchin, Hertfordsithirent Consultants Business hours Telephone Hitchinn $54761 / 2$
Evening/weekends Telephone Hitchin 4875

EDITORIAL SERVICES CONTROLLER
The Macmillan Press require an Editorial Services Controller to
work in their Higher and Further Educat work in their Higher and Further Education Division, on a very
wide variety of books in subiects from undergad

 example, foectoricisand mathematics are essenial. Trinining backsound
Pleage esend appilations in handwiting, with a deatied
curriculum urae ef

M macmilan

DEMNERITry Of REEG electronics technicians

Appointments

Electronic
 TO £4800 p/a
 Test Engineers

 recording companies, recording studios and broadcasting authorities thrworld and have enjoyed successful growth since incorporation in 1968.
The increased demand for our equipment in the recording and cinema industries has The increased demand for our equipment in the recording and cinema industries ha necessitated the recruitment of experienced test engineers. of quality and delivery pressures telephone Tony Hill 01-720 1111.

DODolby

 For further details on both these positionplease contact: Jonathan Smith, Internationa
Marine Radio Co. Ltt. Intelco House, 302 Marine Radio Co. Ltd., Intelco House, 302
Commonside East, Mitcham CR4 1 YT , Surrey.

IMRC

PHYSICS DEPT. ELECTRONIC WORKSHOP Applications are invited for a vacancy in the above. Applicants must be able to develop analogue and digital circuitry for use in cluding a knowledge of micro processors and computer interfaces. Qualification to HNC or HND (electronic) standard or have equivalent practical ex$£ 4701-£ 6123$ p.a. (pay scale under review). Applications to Mr. E. A. Beckett, Department of Middlesex Hospital Medical School, Cleveland Street, London W1P 6DB.

We manufacture and market audio noise reduction equipment which is used by majo

If you have practical knowledge and experience of electronic testing, think you can

Dolby Laboratories Inc
346 Clapham Road
London SW9 9AP
Telephone 01-720 1111
(9372)
Marine Radio
Service Engineers
Cardift, Tilbury and Aberdeen
ROYAL COLLEGE OF AR TECHNICIAN

$$
\begin{aligned}
& \text { is required in the School of Film } \\
& \text { and Television to assist in the } \\
& \text { dailveneration and maintenance }
\end{aligned}
$$

$$
\begin{aligned}
& \text { is required in the School of rim } \\
& \text { and Thelevision to assist in the } \\
& \text { dialy operation and maintenance } \\
& \text { of colour television studio and }
\end{aligned}
$$

$$
\begin{aligned}
& \text { daily operation and maintenance } \\
& \text { of colour television studio and }
\end{aligned}
$$

International Marine Radio Co. is engaged
in the manutacture of high quality marine communication equipment. We have
vacancies for Marine Radio Service Engineers in our Cardift, , Tilbury and Aberdeen Depot's.s. The work will be concerned with installation board commercial vessels of all types.
Ideal candidates, male or female, will have had at least three years sea experience ehicle is provided for business and persona

systems is essential and some
experience with studio equip expent would be an adveqtage.
mend
Candidates should hold $C \& G$ Par Candidates shoul hold
II Certificate or equivalen

will be in the range $£ 3998$ -
w 4580 according to qualifica tions and experience. 4 weeks
toliday. Pensionable appointholiday
ment.
interested applicants should
write giving full details of pre-
vious
 tems developments includes sound
and colour tevevision production
video recording and edititg to to nea video recorrding and editing to near
broadcast standards . The electronic engineer will apply divital and analo.
gge techniques so
newew equelop and instal
new

HNC or equivalent tain standard degree
will be
expected expected and experience with elec-
tronic design and construction, preftronic design and cons
erably yincluding televis Application forms and further details
年om Personnel Officer. Brighton
Polytechnic

ELECTRONIC ENGINEER

- DESIGN / DEV
- TEST FIELD SERVICE

High Salaries - Most Areas
Phone 01.7314353
LeApex Personnel
 Independent Television News have a vacancy for an Electronic
Engineer to work with a small team engaged in the mainten
ance and installation of a wide variety of sound equipment ance and instaliation and
including sound mixing desks, studio and film sound equipment and tape recording machines.
Applicants must be experienced in this field an
work either a 5 -day week or on a shift pattern.
Contributory pension scheme, free life insurance, 4 weeks
holiday, subsidised staff restaurant. Salary up to $£ 6,500$ depending on experience.

Telephone the Personnel Office on 01-637 3144 for an application form, quoting reference 31005.

MONEY MONEY MONEY

Top management have a problem. Shareholders clamour for work on state of the art devices. Product development is an
expensive business.

Ourclient company's design pokes sense. Designs based proven techniqu
spend their mon spend their money on the exotic. esuit
Happy engineers and bulging order books.

CURRENT VACANCIES INCLUDE

Design Development Engineers to work on a new generation of
equipment including:

1) Automation
2) Automation
processor
3) Analogue and digital signal processing equipment
4) Analogue process control equipment which involves pattern
recognition techniques and incorporation of X-ray principles in recognition
the design
5) Data recording equipment for differing environments from
airborne to submarine

Vacancies exist from Principal Engineer level to new gradu-
ates. Location: West London. Salary involved - up to $£ 8,500$.
For further details contact
Charles Airey Associates

A CAREER IN THE MODERN RECORDING INDUSTRY

THE TOWN HOUSE is a new recording studio complex in Goldhawk Road, Shepherds Bush. We require

TECHNICAL MAINTENANCE ENGINEERS

to maintain and develop the equipment used in our two
studios. The successful applicant should have a basic studios. The successful applicant should have a basic working knowledge of analogue and digital circuitry as used in modern audio equipment as well as an under-
standing of the tape recording process and multi-track recorders. An interest in computers in relation to sound mixing and a liking for modern rock music would also be an advantage.

The job requires a certain amount of unsocial hours and weekend working.

Please write to the Studio Manager, Ms Susie O'List giving a brief account of your career and experience to date. All applications will be treated in confidence.

Professional Careers

 in Electronics

All the others are measured by us... At Marconi Instruments we ensure that the very best of
innovative design is used on our range of innovative design is used on our range of
communications test instrument number of interesting instruments and A.T.E. We have a Production and Service Departments and we can offe attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation. If you are intereste
following details:-

Present job

Return this coupon to. John Prodger, Marconi
Instruments Limited, FREEPOST, St. Albans, Herts,
Marconi
Instruments

BBC

 ENGINEERING TRAINING DEPARTMENT WOOD NORTON, EVESHAM, WORCESTERSHIRE. require a LECTURER

-- 0
 Norwich Airport

Technical Officers

Due to continued Airport expansion there are 2 vacancies for
experienced persons as Technical Officers (Electronic Technicianexperienced persons as technical Oficerss Electronic Tecinician-
Engineerss at Norvich Airporto assist the Senior Techical Oficer
in the maintenance and instlatlation of a wide range of navigational, in the maintenance and installation of a wide range of navigational,
communications and airfield lighting equipment, including ACR
 and receivers. Expe
distinct advantage.
National Joint Council Conditions of Employment apply, subject to
the Norwich CCitc Council's ocal lovirations and agreements. Grade
T T.5, Basic scale $£ 4$, it oan
$£ 312$ per annum. it is planned to introduce shift working shortly which will attract a shift allowance of 14% of basic salary plus
payments for working at weekends and on Public Holidays. payments for working at weekends and on Public Holidays.
Re-location expenses of up to $£ 650$ and temporary housing Nocrmich is a Cathedral City of some quality, with a thriving
shopping /commercial centre, within easy reach of the Broads and shoppi
Coast.
For fuller dotails and an application form write to the Deputy
Airport Manager, Norwich Airport, Fifers Lane, Norwich Airport Manager, Norwich Airport, Fifers Lane, Norwich
NR6 6JA. The Senior Technical Officer can NR6 6 JA . The Sonior Technical Officicer can be contacted on
Norwich 411923 for informal discussion about the nature of the work involved.
Application forms must be returned within 21 days of
publication of this advertisement.

YOUR CAREER STARTS HERE
GELLER BUSINESS EQUIPMENT LTD.
This company. leading distributors of electronic point of sale systems
and uo market calculators, needs

1. JUNIOR ELECTRONIC

 TECHNICIAN(aged 18 approx.) to train in fault locating and repair of printed circuit boards and associated equipment.
Some formal qualifications desirable, but enthusiasm and ability to
benefit from training are equally important.

2. ELECTRONIC TECHNICIANS

 (aged 20 approx.) City \& Guilds standard to work with 'state of the art' Following training, the work will involve modification and program-ming advanced electronic cash registers and educating users. THESE JOBS OFFER TOP PAY RATES AND FULL OPPORTUNITY TO
DEVELOP TALENTS, FURTHER KNOWLEDGE AND ENCOURAGE THE ENTHUSIASTIC. OUR TECHNICAL SECTION COMPRISES A SMALL GROUP OF
YOUNG, FRIENDLY PEOPLE, WHO WORK AS A TEAM AND DEVEYOUNG, FRIENDLY PEOPLE, WHO WORK AS A
LOP THEIR ABILITY BY MUTUAL ASSISTANCE.
Write fully or Te
Norman Geller
Norman Goller
GEELER BUSNS
EQUIPMENT LTD 15 PERCY STREET,
TOTIENHAM COU TOTTENHAM COURT ROAD
LONDON W1P OEX
Telophone No. 01-580 1614

GELLER

ARTICLES FOR SALE

Classified

 $19^{\prime \prime}$ rack. Auto Charger.
 Interport Mains-Store Ltd. POB 51, London W11 38Z
Tel: 01-727 7042 or 0225310916

The Polytechnic of Central London School of Engineering and Science

Part-time MSc Course linked with industry in

COMMUNICATION SYSTEMS
Students attend one day a week for two years and undertake a detailed
study in which fundamental theoretical topics are considered along
side their practical implementation, involving both side newly-er practical implementation, involving both traditional and Other part-time MSC courses include: Physical Instrumentation,
Instrumentation applied to Medicine and Biology, Instrumentation and Instrumentation applied to Medicicie and Biology, Instrumentation and
Systems Engineering and Modern Taxonomy (jointly with CLP). Further details and application forms from: The Registry, School
of Engineoring and Science, PL, 115 New Cavendish Street,

TEST EQUIPMENT	
We are disposing of a considerable amount of good quality test gear including Tektronic scopes at silly prices.	(R.P.е.B.S. Ltd.) UNvERBAAL Supplleas
* Ring Derek Pattinson now and discuss your requirements Crofton Electronics Ltd. 35 Grosvenor Road. Twickenham, Middlesex Tel. 01-891 1923 (821i)	
DESIGN AND DEVEI OPNENT, competent engineering effort available Single circuits or complete systems, prototype to production run. E.I.A.. 80 Wheatland Lane, Wallasey, Merseyside, 051-639 9122.	
Analogue Instrum ents, RF Trans. mitters and Recelvers ior contron	
metery, Video Transmitters and Monitors, Motorised Pan and Tilt	ueations: Suumit coin Mases, Roughs.
	flet housewemee
ELECTRONIC DESIGN SERVICES Whe engineering experience avail able for the design of basic circuits to complete systems. Analogue DC to 1 GHz and Digital. Write or phone Mr Anderson, Andertronics (Nr. 2639. Farnham),	NOTICE TO OTHER MANUFACTURERS \qquad
PRECISION SHEET METAL work chassis, panels, etc., steel, stain good deliveries. EES Ltd. Clifio	
Reoad, Morks Telex 42401.	ARTICLES WANTE
 	WANTED All your goid washed scrap. Plugs, sockets,
ARTICLES WANTED	
	. Skellern Metals, The Iron Yard (Ese 1935). Cutiers Green, Thaxted, Essex CM19 862.

 JOHNS RADIO

SPOT CASH

Micro-soldering!

 $1 / 8$ " bit and priced at $£ 4.37$ inclusive of VAT and P. $8 P$. Range
4 other bits available.

Model SK1 Kit

This kit Contains a 15 watt miniature
soldering iron, complete with 2 spare ins. a coill of solder ale a heat sink ${ }^{\text {sind }}$ and a
boklet. How to solder: Priced at 6.48
nclusive of VAT and P. $\dot{8}$.

Model MLX Kit

Antex TCSU1 \& CTC
... the perfect kit for miniature
work
*CTC. No. $7 / 010$
Tips size: $0.5 \mathrm{~mm}-.02$

Finger-tip accuracy Finger-tip accuracy
combined with strict anywhere between 145 ant
Negligible leakage current. Earthed and protected by 'fail-safe' circuit. Operates at 24 volts. TCSU1 station complete with soldering iron (XTC or CTC) $£ 36$, nett to industry plus VAT.
Our multi purpose range of soldering irons are all made in England and fully guaranteed. They are but if unobtainable locally we will supply direct

A N T E X
Maytiower House, Armada Way, Plymouth, Devon Tel: 0752 67377/8 Telex: 45296 Please send the following

Please send the ANTEX colour brochure I enclose cheque/PO/Giro No. 258 1000 Name. Address

All prices shown are recommended retail, inc. VAT.
In difficulty send direct, plus 20p P \& P. Send S.A.E. for free copy of colour catalogue detailing complete range. Bib Hi-Fi Accessories Limited,
Kelsey House, Wood Lane End, Hemel Hempstead, Herts., HP2 4RQ.

[^0]: WW - 032 FOR FURTHER DETAILS

[^1]:

[^2]: Typ Spec. $24+24 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input S / N 2 dB . Headphone output. Tape in/Out facility (for noise reduction unit, etc.). Toroidal mains transform PRICE: $£ 35.95$ + VAT

